Investigating the plant response to cadmium exposure by proteomic and metabolomic approaches.

Proteomics

Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire Végétale, Grenoble, France.

Published: May 2011


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Monitoring molecular dynamics of an organism upon stress is probably the best approach to decipher physiological mechanisms involved in the stress response. Quantitative analysis of proteins and metabolites is able to provide accurate information about molecular changes allowing the establishment of a range of more or less specific mechanisms, leading to the identification of major players in the considered pathways. Such tools have been successfully used to analyze the plant response to cadmium (Cd), a major pollutant capable of causing severe health issues as it accumulates in the food chain. We present a summary of proteomics and metabolomics works that contributed to a better understanding of the molecular aspects involved in the plant response to Cd. This work allowed us to provide a finer picture of general signaling, regulatory and metabolic pathways that appeared to be affected upon Cd stress. In particular, we conclude on the advantage of employing different approaches of global proteome- and metabolome-wide techniques, combined with more targeted analysis to answer molecular questions and unravel biological networks. Finally, we propose possible directions and methodologies for future prospectives in this field, as many aspects of the plant-Cd interaction remain to be discovered.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.201000645DOI Listing

Publication Analysis

Top Keywords

plant response
12
response cadmium
8
investigating plant
4
response
4
cadmium exposure
4
exposure proteomic
4
proteomic metabolomic
4
metabolomic approaches
4
approaches monitoring
4
molecular
4

Similar Publications

Evaluating the olfactory preferences of emerging insect pests is critical to develop monitoring tools and improve early detection and management strategies. Here the chemical ecology and olfactory preferences of the allium leafminer Phytomyza gymnostoma Loew (Diptera: Agromyzidae), an invasive pest in North America affecting allium crops such as leeks and onions, were investigated. Three bioassay methods were assessed under laboratory conditions: wind tunnel, Y-tube olfactometer, and arena bioassay.

View Article and Find Full Text PDF

Salt stress impairs photosynthetic efficiency and consequently reduces the growth, development, and grain yield of crop plants. The formation of hydrophobic barriers in the root endodermis, including the suberin lamellae and Casparian strips, is a key adaptive strategy for salt stress tolerance. In this study, we identified the role of the rice NAC transcription factor, ONAC005, in salt stress tolerance.

View Article and Find Full Text PDF

Molecular Mechanisms Underlying Parasitoid-Derived Host Manipulation Strategies.

Annu Rev Entomol

September 2025

2Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; email:

Parasitoid wasps are a diverse group of insects with a unique parasitic lifestyle that allows them to spend their lives closely interacting with their insect hosts, facilitated by parasitic effectors, including venom, polydnaviruses, and teratocytes. These effectors manipulate various aspects of insect host biology to increase the survival of the parasitoids' offspring. During the last two decades, omics and functional studies have significantly advanced our understanding of how parasitoids manipulate their hosts at the molecular level.

View Article and Find Full Text PDF

Warm temperature-induced autophagy mediates selective degradation of TIMING OF CAB EXPRESSION 1 thus promoting plant thermomorphogenesis.

Plant Cell

September 2025

Department of Plant Sciences, College of Biological Sciences, State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China.

Plant thermomorphogenesis is a critical adaptive response to elevated ambient temperatures. The transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) integrates diverse environmental and phytohormone signals to coordinate thermoresponsive growth. However, the cellular mechanisms underlying plant thermomorphogenic growth remain poorly understood.

View Article and Find Full Text PDF

Natural Products for Regulation of Autoimmune Diseases: Chemical Diversity, Pharmacology, and Therapeutic Applications.

Chem Biodivers

September 2025

Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, Laboratory of Anti-Allergy Functional Compounds, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.

Autoimmune diseases (AIDs), defined by irregularities in immune system function, pose a substantial health challenge worldwide, impacting millions with persistent and frequently debilitating conditions. Conventional treatments, such as glucocorticoid-based immunosuppressive therapies, are associated with notable drawbacks and limitations. In response to these difficulties, recent scientific efforts have increasingly focused on natural compounds as potential therapeutic agents.

View Article and Find Full Text PDF