Leaf δ18O of remaining trees is affected by thinning intensity in a semiarid pine forest.

Plant Cell Environ

Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, PO Box 164, 30100 Murcia, SpainDepartamento de Geografía y Ordenación del Territorio, Universidad de Zaragoza, SpainDirección General de Patrimonio Natural y Biodiversidad de la Comunidad Autón

Published: June 2011


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Silvicultural thinning usually improves the water status of remaining trees in water-limited forests. We evaluated the usefulness of a dual stable isotope approach (δ¹³C, δ¹⁸O) for comparing the physiological performance of remaining trees between forest stands subjected to two different thinning intensities (moderate versus heavy) in a 60-year-old Pinus halepensis Mill. plantation in semiarid southeastern Spain. We measured bulk leaf δ¹³C and δ¹⁸O, foliar elemental concentrations, stem water content, stem water δ¹⁸O (δ¹⁸O(stem water)), tree ring widths and leaf gas exchange rates to assess the influence of forest stand density on tree performance. Remaining trees in low-density stands (heavily thinned) showed lower leaf δ¹⁸O, and higher stomatal conductance (g(s)), photosynthetic rate and radial growth than those in moderate-density stands (moderately thinned). By contrast, leaf δ¹³C, intrinsic water-use efficiency, foliar elemental concentrations and δ¹⁸O(stem water) were unaffected by stand density. Lower foliar δ¹⁸O in heavily thinned stands reflected higher g(s) of remaining trees due to decreased inter-tree competition for water, whereas higher photosynthetic rate was largely attributable to reduced stomatal limitation to CO₂ uptake. The dual isotope approach provided insight into the early (12 months) effects of stand density manipulation on the physiological performance of remaining trees.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-3040.2011.02300.xDOI Listing

Publication Analysis

Top Keywords

remaining trees
24
performance remaining
12
stand density
12
isotope approach
8
δ¹³c δ¹⁸o
8
physiological performance
8
leaf δ¹³c
8
foliar elemental
8
elemental concentrations
8
stem water
8

Similar Publications

Somatic embryogenesis (SE) is an in vitro mass propagation system widely employed in plant breeding programs. However, its efficiency in many forest species remains limited due to their recalcitrance. SE relies on the induction of somatic cell reprogramming into embryogenic pathways, a process influenced by transcriptomic changes regulated, among other factors, by epigenetic modifications such as DNA methylation, histone methylation, and histone acetylation.

View Article and Find Full Text PDF

CRISPR RNP-Mediated Transgene-Free Genome Editing in Plants: Advances, Challenges and Future Directions for Tree Species.

Plant Cell Environ

September 2025

State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry

CRISPR ribonucleoprotein (RNP)-mediated genome editing offers a transgene-free platform for precise genetic modification in diverse herbaceous and tree species, including rice, wheat, apple, poplar, oil palm, rubber tree and grapevine. However, its application in woody plants faces distinct challenges, notably inefficient delivery and regeneration difficulties, particularly in species such as bamboo. While some of these issues also occur in herbaceous plants, they are often significantly more complex in woody species due to factors such as intricate cell wall architecture, widespread recalcitrant genotypes and inherent limitations of current delivery platforms.

View Article and Find Full Text PDF

Cooling outweighs warming across phenological transitions in the Northern Hemisphere.

Proc Natl Acad Sci U S A

September 2025

Chinese Academy of Sciences Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.

Vegetation phenology, i.e., seasonal biological events such as leaf-out and leaf-fall, regulates local climate through biophysical processes like evapotranspiration (ET) and albedo.

View Article and Find Full Text PDF

The Asiatic apple leafminer, Phyllonorycter ringoniella (Matsumura), is a significant secondary pest of apple trees in Northeast Asia. To better understand its population dynamics, a population model based on temperature-developmental relationships was constructed. This model includes three sub-models: spring emergence, immature stage transition, and adult oviposition.

View Article and Find Full Text PDF