98%
921
2 minutes
20
In the radioactive waste management, metal chloride wastes from a pyrochemical process is one of problematic wastes not directly applicable to a conventional solidification process. Different from a use of minerals or a specific phosphate glass for immobilizing radioactive waste salts, our research group applied an inorganic composite, SAP (SiO(2)-Al(2)O(3)-P(2)O(5)), to stabilize them by dechlorination. From this method, a unique wasteform composing of phosphate and silicate could be fabricated. This study described the characteristic of the wasteform on the morphology, chemical durability, and some physical properties. The wasteform has a unique "domain-matrix" structure which would be attributed to the incompatibility between silicate and phosphate glass. At higher amounts of chemical binder, "P-rich phase encapsulated by Si-rich phase" was a dominant morphology, but it was changed to be Si-rich phase encapsulated by P-rich phase at a lower amount of binder. The domain and subdomain size in the wasteform was about 0.5-2 μm and hundreds of nm, respectively. The chemical durability of wasteform was confirmed by various leaching test methods (PCT-A, ISO dynamic leaching test, and MCC-1). From the leaching tests, it was found that the P-rich phase had ten times lower leach-resistance than the Si-rich phase. The leach rates of Cs and Sr in the wasteform were about 10(-3)g/m(2)· day, and the leached fractions of them were about 0.04% and 0.06% at 357 days, respectively. Using this method, we could stabilize and solidify the waste salt to form a monolithic wasteform with good leach-resistance. Also, the decrease of waste volume by the dechlorination approach would be beneficial in the final disposal cost, compared with the present immobilization methods for waste salt.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es1029975 | DOI Listing |
Environ Res
September 2025
College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan,P.R.China; Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu 610059, P.R.China.
Naturally occurring radioactive materials (NORM) are present in waste generated during shale gas drilling activities and pose potential risks to the environment, drawing increasing public and scientific attention. In this study, soil, wastewater and effluent samples were collected across multiple operational stages of shale gas development in Southwest China. A combination of in-situ gamma absorbed dose rate in air, soil radon concentration, radionuclide activity concentrations, and conventional hazard indices was used to evaluate environmental radioactivity and potential occupational exposure.
View Article and Find Full Text PDFJ Hazard Mater
August 2025
Radiochemistry Unit, Department of Chemistry, The University of Helsinki, Helsinki 00560, Finland. Electronic address:
Uranium dioxide (UO) particles can be released from mines, nuclear fuel manufacturing, reactor accidents, and weapons use. They pose inhalation risks, yet their behavior in the human lung remains poorly understood. This study investigates the long-term chemical alteration and dissolution of µm-sized UO particles in two model lung fluids: Simulated Lung Fluid (SLF) and Artificial Lysosomal Fluid (ALF), representing extracellular and intracellular lung environments, respectively.
View Article and Find Full Text PDFJ Environ Radioact
September 2025
Analytical Chemistry and Control Department, Hot Laboratories and Waste Management Center (HLWMC), Egyptian Atomic Energy Authority (EAEA), 13759, Cairo, Egypt.
The huge volume waste of the produced water (PW) associated with petroleum extraction poses significant hazards to the surrounded environment due to its complex composition and the presence of various hazardous pollutants, including organic, inorganic, biological contaminants, and natural occurring radioactive materials (NORM). This study was conducted to investigate the factors affecting the removal of the long-lived radium isotopes, i.e.
View Article and Find Full Text PDFEcotoxicol Environ Saf
September 2025
Branch "Institute of Radiation Safety and Ecology" of National Nuclear Centre, Beibit Atom st. 2B, Kurchatov 180010, Kazakhstan.
Tightly bound tritium (TBT) in soil is poorly studied in terms of its bioavailability. This paper presents the results of long-term studies (2018 through 2023) on the bioavailability of tightly bound tritium in soil. Field studies were conducted in the epicentral zones of the Semipalatinsk test site (STS), using dominant and subdominant species.
View Article and Find Full Text PDFJ Environ Radioact
September 2025
Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, China. Electronic address:
The discharge of nuclear wastewater into the sea may pose a significant environmental and health risk due to radionuclides such as Cs and Sr. Consequently, the efficient removal of these nuclides has emerged as a focal point in the field of radioactive wastewater treatment. Traditional restoration methods, which rely on physical and chemical interventions as well as bioremediation, are economically burdensome and unsuitable for large-scale restoration efforts.
View Article and Find Full Text PDF