Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Aims: DNA barcoding strongly suggests that specimens of the slender codling (Halargyreus johnsonii) from New Zealand and Tasmania belong to a different species to H. johnsonii reported from other areas.

Results: Sequence divergence between the two groups averaged 3.95%, much higher than within-group divergences of 0.03 and 0.02% for specimens, respectively, from New Zealand-Tasmania and from the North Pacific, Atlantic Ocean, and Southern Ocean.

Conclusion: Meristic data for specimens from New Zealand and from the Southern Ocean north of the Ross Sea support the conclusion of two species. DNA barcodes for two sister taxa, Antimora rostrata and Antimora microlepis, show low intra-species (0.3-0.06%) and inter-species (0.23%) divergence.

Download full-text PDF

Source
http://dx.doi.org/10.3109/19401736.2010.532329DOI Listing

Publication Analysis

Top Keywords

dna barcoding
8
antimora rostrata
8
rostrata antimora
8
antimora microlepis
8
barcoding morid
4
morid cods
4
cods reveals
4
reveals deep
4
deep divergence
4
divergence antitropical
4

Similar Publications

This study addresses historical uncertainties regarding morphological variation in the paraprocts of Tupiperla illiesi, a stonefly with a complex taxonomic history. We tested whether these variations represent phenotypic plasticity or distinct species using integrative taxonomy. Adult gripopterygids were collected from Estação Biológica de Boracéia utilizing Malaise and light traps.

View Article and Find Full Text PDF

Cancer development and response to treatment are evolutionary processes, but characterizing evolutionary dynamics at a clinically meaningful scale has remained challenging. Here we develop a new methodology called EVOFLUx, based on natural DNA methylation barcodes fluctuating over time, that quantitatively infers evolutionary dynamics using only a bulk tumour methylation profile as input. We apply EVOFLUx to 1,976 well-characterized lymphoid cancer samples spanning a broad spectrum of diseases and show that initial tumour growth rate, malignancy age and epimutation rates vary by orders of magnitude across disease types.

View Article and Find Full Text PDF

DNA fecal metabarcoding has revolutionized the field of herbivore diet analyses, offering deeper insight into plant-herbivore interactions and more reliable ecological inferences. However, due to PCR amplification bias, primer selection has a major impact on the validity of these inferences and insights. Using two pooling approaches on four mock communities and a case study examining diets of four large mammalian herbivores (LMH), we evaluated the efficacy of two primer pairs targeting the internal transcribed spacer 2 (ITS2) region: the widely used ITS-S2F/ITS4 pair and the UniPlant F/R pair, designed specifically for DNA metabarcoding.

View Article and Find Full Text PDF

Microfluidics-assisted spatially barcoded microarray technology offers a high-throughput, low-cost approach towards spatial transcriptomic profiling. A uniform barcoded microarray is crucial for spatially unbiased mRNA analysis. However, non-specific adsorption of barcoding reagents in microchannels occurs during liquid transport, causing non-uniform barcoding in the chip's functional regions.

View Article and Find Full Text PDF

This study presents the first record of Kanturski & Lee, 2024 (Aphididae: Lachninae) in South Korea, thereby extending its known distribution beyond Japan and identifying a new host plant, (Rosaceae). We describe diagnostic morphological traits across multiple life stages and compare them with those of Japanese populations. Comparative analyses with Japanese populations demonstrated consistent morphological differentiation, notably elevated ratios of the ultimate rostral segment to antennal segments across multiple morphs in the Korean population, indicating potential ecological adaptation.

View Article and Find Full Text PDF