Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cuticular waxes are known to play a pivotal role in limiting transpirational water loss across primary plant surfaces. The astomatous tomato fruit is an ideal model system that permits the functional characterization of intact cuticular membranes and therefore allows direct correlation of their permeance for water with their qualitative and quantitative composition. The recessive positional sterile (ps) mutation, which occurred spontaneously in tomato (Solanum lycopersicum L.), is characterized by floral organ fusion and positional sterility. Because of a striking phenotypical similarity with the lecer6 wax mutant of tomato, which is defective in very-long-chain fatty acid elongation, ps mutant fruits were analyzed for their cuticular wax and cutin composition. We also examined their cuticular permeance for water following the developmental course of fruit ripening. Wild type and ps mutant fruits showed considerable differences in their cuticular permeance for water, while exhibiting similar quantitative wax accumulation. The ps mutant fruits showed a five- to eightfold increase in water loss per unit time and surface area when compared to the corresponding wild type fruits. The cuticular waxes of ps mutant fruits were characterized by an almost complete absence of n-alkanes and aldehydes, with a concomitant increase in triterpenoids and sterol derivatives. We also noted the occurrence of alkyl esters not present in the wild type. Quantitative and qualitative cutin monomer composition remained largely unaffected. The significant differences in the cuticular wax composition of ps mutant fruits induced a distinct increase of cuticular water permeance. The fruit wax compositional phenotype indicates the ps mutation is responsible for effectively blocking the decarbonylation pathway of wax biosynthesis in epidermal cells of tomato fruits.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2010.11.014DOI Listing

Publication Analysis

Top Keywords

mutant fruits
20
permeance water
12
wild type
12
cuticular
9
positional sterile
8
sterile mutation
8
wax biosynthesis
8
fruits
8
tomato fruits
8
fruits cuticular
8

Similar Publications

Plastoglobuli (PG) are plant lipoprotein compartments, present in plastid organelles. They are involved in the formation and/or storage of lipophilic metabolites. FIBRILLINs (FBNs) are one of the main PG-associated proteins and are particularly abundant in carotenoid-enriched chromoplasts found in ripe fruits and flowers.

View Article and Find Full Text PDF

Advances in molecular mechanisms of genetic mutations underlying chlorophyll deficiency in plants.

Plant Sci

September 2025

Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, Chin

Chlorophyll is vital for plants, giving them their green color and playing indispensable crucial role in photosynthesis. Chlorophyll-deficient mutants serve as classic models for studying plant pigment metabolism and typically exhibit chlorotic or albino phenotypes, resulting in major impacts on photosynthetic efficiency and growth development of plants. Understanding the mechanisms behind chlorophyll deficiency not only advances basic plant biology but also supports crop breeding strategies aimed at improving yield, stress tolerance, and adaption.

View Article and Find Full Text PDF

Dormancy release and germination of the seed are two separate, but continuous phases controlled by both external (e.g., light and temperature) and internal (e.

View Article and Find Full Text PDF

Anastrepha obliqua, a neotropical pest widely distributed in the Americas, attacks mango and other tropical fruits. In Mexico, it is controlled through integrated pest management, using the Sterile Insect Technique (SIT) as a main component. The applicability of SIT is significantly improved with the use of genetic sexing strains (GSS) that allow the possibility to release exclusively sterile males, the primary component of the technique.

View Article and Find Full Text PDF

Biofortification of tomatoes with beta-carotene through targeted gene editing.

Int J Biol Macromol

September 2025

Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China. Electronic address:

Vitamin A deficiency is one of the most severe micronutrient-related health issues worldwide. Tomatoes, a widely cultivated crop for their adaptability, nutritional value, and lycopene content (a beta-carotene precursor), are ideal candidates for biofortification. In this study, CRISPR-mediated knockout mutants (cr-SlLCYe and cr-SlBCH) were generated to enhance the precursor supply to the β-carotene biosynthetic pathway and reduce its degradation.

View Article and Find Full Text PDF