98%
921
2 minutes
20
Objectives: The aim of the present study was to evaluate a Ca-P coated implant surface in a rabbit model. The Ca-P surface (test) was compared to the titanium porous oxide surface (control) in terms of bone-to-implant contact (BIC) and removal torque value.
Materials And Methods: Two hundred and sixteen dental implants were inserted in the tibia and in the femur of 36 rabbits. One hundred and eight were represented by Ca-P oxidized surface implant and other 108 were titanium porous oxide surface modified implants. Each rabbit received six implants. Animals were sacrificed after 2, 4 and 9 weeks of healing. Each group included 12 rabbits. The femoral implant and the proximal implant of the tibia of each animal were subjected to the histologic analysis and the distal implants of the tibia underwent removal torque test (RTQ).
Results: Histological analysis in terms of BIC and RTQ did not revealed any significant difference between the Ca-P oxidized surface and the oxidized surface at 2 and 4 weeks. At 9 weeks, the oxidized surface demonstrated better results in terms of RTQ in the tibia.
Conclusion: In conclusion, findings from the present study suggested that the Ca-P coating had no beneficial effect in improving bonding strength at the bone-implant interface either at 2, 4 and 9 weeks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1600-0501.2010.02056.x | DOI Listing |
Regen Biomater
August 2025
College of Textiles & Clothing, Institute of Functional Textiles and Advanced Materials, Qingdao 266071, China.
Bacterial infection in the injured skin may threaten the wound repair and skin regeneration owing to aggravated inflammation. The multifunctional dressings with persistent antibacterial activity and improved anti-inflammatory capability are urgently required. Herein, a type of heterogeneous zinc/catechol-derived resin microspheres (Zn/CFRs) composed of zinc ions (Zn) and zinc oxide (ZnO) nanoparticles was developed to impart the methacrylamide chitosan (CSMA)-oxidized hyaluronic acid (OHA) hydrogel with a persistent Zn release behavior.
View Article and Find Full Text PDFiScience
September 2025
Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
Arbuscular mycorrhizal fungi (AMF) play a crucial role in disease control by establishing symbiotic relationships with plant roots. AMF improve salinity tolerance in plants by regulating the Na/K ratio through selective ion transport and mediate osmotic regulation by inducing the accumulation of osmotic-compatible solutes such as glycine betaine and proline to enable plant cells to maintain water content and the metabolic balance. AMF can also activate antioxidant defense responses by stimulating enzymes that protect plant cells from harmful oxidation and pathological infections.
View Article and Find Full Text PDFACS Electrochem
September 2025
Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom.
The surface structure of an electrocatalyst plays a crucial role in determining the activity. As a model system, gold has been widely investigated as an electro-oxidation catalyst, although there has been much less research on the oxygen evolution reaction (OER) in the potential region of gold oxidation. Here, we combine voltammetric scanning electrochemical cell microscopy (SECCM) and electron backscatter diffraction (EBSD), at different spatial and angular resolutions, respectively, to correlate the local crystallographic structure of polycrystalline goldfocusing on grains close to (113), (011), (114), and (111) orientationswith the electrocatalytic behavior for the OER.
View Article and Find Full Text PDFBeilstein J Nanotechnol
August 2025
Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada.
The preparation of multimodal nanoparticles by capping magnetic iron oxide nanoparticles (IONPs) with functional organic molecules is a major area of research for biomedical applications. Conjugation reactions, such as carbodiimide coupling and the highly selective class of reactions known as "click chemistry", have been instrumental in tailoring the ligand layers of IONPs to produce functional biomedical nanomaterials. However, few studies report the controls performed to determine if the loading of molecules onto IONPs is due to the proposed coupling reaction(s) employed, or some other unknown interaction with the IONP surface.
View Article and Find Full Text PDFMater Horiz
September 2025
Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.
A prefabricated matrix is normally used as the cathode host for lithium-sulfur batteries to address the shuttle effect problem. Unconventionally, herein we present a non-shaped matrix for a sulfur cathode that enables a better lithium-sulfur battery. The fast oxide-ion conductor LaMoO is introduced into the sulfur cathodes for the first time.
View Article and Find Full Text PDF