Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Disulfide bond engineering is an important approach to improve the metabolic half-life of cysteine-containing peptides. Eleven analogues of oxytocin were synthesized including disulfide bond replacements by thioether, selenylsulfide, diselenide, and ditelluride bridges, and their stabilities in human plasma and activity at the human oxytocin receptor were assessed. The cystathionine (K(i) = 1.5 nM, and EC₅₀ = 32 nM), selenylsulfide (K(i) = 0.29/0.72 nM, and EC₅₀ = 2.6/154 nM), diselenide (K(i) = 11.8 nM, and EC₅₀ = 18 nM), and ditelluride analogues (K(i) = 7.6 nM, and EC₅₀ = 27.3 nM) retained considerable affinity and functional potency as compared to oxytocin (K(i) = 0.79 nM, and EC₅₀ = 15 nM), while shortening the disulfide bridge abolished binding and functional activity. The mimetics showed a 1.5-3-fold enhancement of plasma stability as compared to oxytocin (t(½) = 12 h). By contrast, the all-D-oxytocin and head to tail cyclic oxytocin analogues, while significantly more stable with half-lives greater than 48 h, had little or no detectable binding or functional activity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm100989wDOI Listing

Publication Analysis

Top Keywords

disulfide bond
12
plasma stability
8
bond engineering
8
compared oxytocin
8
binding functional
8
functional activity
8
oxytocin
5
ec₅₀
5
modulating oxytocin
4
activity
4

Similar Publications

Objective: This study investigated the locations of amino acid modifications within two major human hair keratins (Type I K31 and Type II K85) with probable implications for protein and hair structural component integrity. The particular focus was on cysteine modifications that disrupt intra-protein and inter-protein disulphide bonds.

Methods: Human hair was exposed to accelerated, sequential heat or UV treatments, simulating effects resulting from the use of heated styling tools and environmental exposure over a time frame approximating one year.

View Article and Find Full Text PDF

S-glutathionylation (SSG), a redox-sensitive post-translational modification mediated by glutathione, regulates protein structure and function through reversible disulfide bond formation at cysteine residues. Glutaredoxins (GRXs), pivotal antioxidant enzymes, catalyze SSG dynamics to maintain thiol homeostasis. Recent advances in redox proteomics have revealed that SSG dysregulation is intricately linked to neurodegenerative, cardiovascular, pulmonary and malignant diseases.

View Article and Find Full Text PDF

Tussah pupa protein (TPP), rich in diverse bioactive components and demonstrating extensive physiological activities, has attracted attention in food processing. However, its limited emulsion stability restricts application potential, requiring improvement of techno-functional properties. The effects of myofibrillar protein (MP) compounding coupled with ultrasonic treatment on the emulsifying properties and nutritional value of TPP were systematically investigated from a multi-scale perspective in this study.

View Article and Find Full Text PDF

Different starch crystal structures significantly influence meat product quality, though their specific impacts on myofibrillar protein (MP) functionality remain unclear despite industry demand for optimized ingredients. This study compared how potato, corn, mung bean, and pea starches affect MP properties in minced pork. Our findings reveal that starch-protein interactions fundamentally regulate MP gel and emulsion properties through the following mechanisms: First, starch promotes protein aggregation by enhancing hydrophobic interactions and disulfide bond formation, affecting gel network crosslinking.

View Article and Find Full Text PDF

Polyesters are a widely used class of biomaterials thanks to their (bio)degradability and tunable thermomechanical properties. Introducing dynamic disulfide bonds into their backbone enables them to be degraded through different routes and also imparts self-healing properties. However, while numerous polymerization protocols exist with which to introduce disulfide bonds into linear polymers, these methods lack the versatility needed to produce materials with diverse thermomechanical properties.

View Article and Find Full Text PDF