Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We present a dynamic neural network (DNN) solution for detecting time-varying occurrences of tremor and dyskinesia at 1 s resolution from time series data acquired from surface electromyographic (sEMG) sensors and tri-axial accelerometers worn by patients with Parkinson's disease (PD). The networks were trained and tested on separate datasets, each containing approximately equal proportions of tremor, dyskinesia, and disorder-free data from 8 PD and 4 control subjects performing unscripted and unconstrained activities in an apartment-like environment. During DNN testing, tremor was detected with a sensitivity of 93% and a specificity of 95%, while dyskinesia was detected with a sensitivity of 91% and a specificity of 93%. Similar sensitivity and specificity levels were obtained when DNN testing was carried out on subjects who were not included in DNN training.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/IEMBS.2010.5627618 | DOI Listing |