98%
921
2 minutes
20
Background: We investigated the association between the increased eukaryotic translation initiation factor 4E (eIF4E) level and MDM2 overexpression in the esophageal cancer tissue and cells.
Methods: This was a retrospective study of specimens from esophageal cancer patients treated over a 5-year period in a Taiwan university hospital. The predictor variable was eIF4E level in esophageal tumors and CE48T/VGH and TE6 esophageal carcinoma cell lines. The main outcome variable was MDM2 overexpression. Appropriate descriptive and univariate statistics were computed, and a P value of <0.05 was considered statistically significant.
Results: There were two study sample groups. Immunohistochemistry analyses of the first sample group (51 esophageal tumors) revealed that 19 specimens demonstrated MDM2 elevation and 20 specimens had eIF4E overexpression. eIF4E elevation was evidenced by accumulation of the protein in the cytoplasm. There was a significant association between the eIF4E and MDM2 expression (P < 0.001). Western blot analysis and semiquantitative reverse transcriptase-polymerase chain reaction of the second specimen group (20 pairs of tumors and normal tissues) revealed the co-elevation of MDM2 and eIF4E (P = 0.008). There was no increased mdm2 transcript in most of the specimens. Without significant alterations in the mdm2 mRNA level and subcellular distribution, MDM2 protein was upregulated in CE48T/VGH cultured cells expressing ectopic eIF4E. Conversely, reduction of eIF4E by specific siRNA enabled TE6 cells synthesizing reduced amounts of MDM2.
Conclusions: Our findings indicate that MDM2 protein levels are strongly associated with and regulated by eIF4E in a posttranscriptional mechanism in esophageal cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1245/s10434-010-1428-y | DOI Listing |
Macrophage Migration Inhibitory Factor (MIF) is a pleiotropic cytokine that acts as a central regulator of inflammation and immune responses across diverse organ systems. Functioning upstream in immune activation cascades, MIF influences macrophage polarization, T and B cell differentiation, and cytokine expression through CD74, CXCR2/4/7, and downstream signaling via NF-κB, ERK1/2, and PI3K/AKT pathways. This review provides a comprehensive analysis of MIF's mechanistic functions under both physiological and pathological conditions, highlighting its dual role as a protective mediator during acute stress and as a pro-inflammatory amplifier in chronic disease.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
May 2025
Department of Maxillofacial Surgery, Xiangya Hospital of Stomatology, Central South University, Changsha 410013, China.
Peptide-based drugs possess several advantages, including high specificity, low immunogenicity, minimal accumulation, and fewer drug-drug interactions, making them a novel and efficient therapeutic class for various diseases. In recent years, peptide-based drugs have shown great potential and broad application prospects in the treatment of oral infectious diseases, tissue injury and repair, tumors, and complex oral mucosal disorders, acting either through direct mechanisms or indirect modulation. Oral administration remains the preferred route due to its non-invasive, painless nature and ease of management; however, gastrointestinal pH can inactivate or even degrade peptide drugs.
View Article and Find Full Text PDFParkinson's disease (PD) is the fastest-growing neurodegenerative disease in the world and appears to be an emerging epidemic in Africa, where counteractive measures have become necessary. Previous reports have highlighted the limited epidemiological and clinical PD research in Africa but overlooked the poor preclinical PD research output of the continent. Because preclinical research is a bedrock for translating basic scientific research into clinical practice, a weak preclinical research foundation can hamper advancement in epidemiological and clinical investigations.
View Article and Find Full Text PDFJ Neurochem
September 2025
Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
Memory formation involves a complex interplay of molecular and cellular processes, including synaptic plasticity mechanisms such as long-term potentiation (LTP) and long-term depression (LTD). These processes rely on activity-dependent gene expression and local protein synthesis at synapses. A central unresolved question in neuroscience is how memories can be stably maintained over time, despite the transient nature of the proteins involved in their initial encoding.
View Article and Find Full Text PDFStress
December 2025
Department of Clinical and Health Psychology, University of Vienna, Vienna, Austria.
Music listening may decrease pain via psychobiological mechanisms. Music listening style (MLS) influences music processing: Music empathizers (ME) focus on emotional aspects of music, whereas music systemizers (MS) focus on structural aspects, potentially affecting processes of music-induced analgesia. The effects of the MLS on music-induced analgesia might depend on the source of music selection (i.
View Article and Find Full Text PDF