Keeping it in the family: diverse histone recognition by conserved structural folds.

Crit Rev Biochem Mol Biol

Department of Structural and Chemical Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY, USA.

Published: December 2010


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Epigenetic regulation of gene transcription relies on an array of recurring structural domains that have evolved to recognize post-translational modifications on histones. The roles of bromodomains, PHD fingers, and the Royal family domains in the recognition of histone modifications to direct transcription have been well characterized. However, only through recent structural studies has it been realized that these basic folds are capable of interacting with increasingly more complex histone modification landscapes, illuminating how nature has concocted a way to accomplish more with less. Here we review the recent biochemical and structural studies of several conserved folds that recognize modified as well as unmodified histone sequences, and discuss their implications on gene expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988946PMC
http://dx.doi.org/10.3109/10409238.2010.512001DOI Listing

Publication Analysis

Top Keywords

structural studies
8
keeping family
4
family diverse
4
histone
4
diverse histone
4
histone recognition
4
recognition conserved
4
structural
4
conserved structural
4
structural folds
4

Similar Publications

Toward Human-Centered Artificial Intelligence for Users' Digital Well-Being: Systematic Review, Synthesis, and Future Directions.

JMIR Hum Factors

September 2025

Seidenberg School of Computer Science and Information Systems, Pace University, New York City, NY, United States.

Background: As information and communication technologies and artificial intelligence (AI) become deeply integrated into daily life, the focus on users' digital well-being has grown across academic and industrial fields. However, fragmented perspectives and approaches to digital well-being in AI-powered systems hinder a holistic understanding, leaving researchers and practitioners struggling to design truly human-centered AI systems.

Objective: This paper aims to address the fragmentation by synthesizing diverse perspectives and approaches to digital well-being through a systematic literature review.

View Article and Find Full Text PDF

Background: The spread of misinformation on social media poses significant risks to public health and individual decision-making. Despite growing recognition of these threats, instruments that assess resilience to misinformation on social media, particularly among families who are central to making decisions on behalf of children, remain scarce.

Objective: This study aimed to develop and evaluate the psychometric properties of a novel instrument that measures resilience to misinformation in the context of social media among parents of school-age children.

View Article and Find Full Text PDF

Background: Breast cancer treatment, particularly during the perioperative period, is often accompanied by significant psychological distress, including anxiety and uncertainty. Mobile health (mHealth) interventions have emerged as promising tools to provide timely psychosocial support through convenient, flexible, and personalized platforms. While research has explored the use of mHealth in breast cancer prevention, care management, and survivorship, few studies have examined patients' experiences with mobile interventions during the perioperative phase of breast cancer treatment.

View Article and Find Full Text PDF

Carbon dots (CDs) represent a new class of nontoxic and sustainable nanomaterials with increasing applications. Among them, bright and large Stokes-shift CDs are highly desirable for display and imaging, yet the emission mechanisms remain unclear. We obtained structural signatures for the recently engineered green and red CDs by ground-state femtosecond stimulated Raman spectroscopy (FSRS), then synthesized orange CDs with similar size but much higher nitrogen dopants than red CDs.

View Article and Find Full Text PDF

To address the increasingly limited water availability, using metal-organic frameworks (MOFs) to capture atmospheric water vapor as usable resources has emerged as a promising strategy. The adsorption characteristics of MOFs as well as their step pressure (i.e.

View Article and Find Full Text PDF