In eukaryotes, different chromatin states facilitate or repress gene expression and restrict the activity of transposable elements. Post-translational modifications (PTMs) of amino acid residues on the N-terminal tails of histones are suggested to define such states. The histone lysine methyltransferase (HKMTase) SU(VAR)3-9 RELATED4 (SUVR4) of Arabidopsis thaliana functions as a repressor of transposon activity.
View Article and Find Full Text PDFIn acute and chronic neurodegeneration, Ca(2+) mishandling and disruption of the cytoskeleton compromise neuronal integrity, yet abnormalities in the signaling roles of cytoskeletal proteins remain largely unexplored. We now report that the microtubule-associated protein p600 (also known as UBR4) promotes neuronal survival. Following depletion of p600, glutamate-induced Ca(2+) influx through NMDA receptors, but not AMPA receptors, initiates a degenerative process characterized by endoplasmic reticulum fragmentation and endoplasmic reticulum Ca(2+) release via inositol 1,4,5-trisphosphate receptors.
View Article and Find Full Text PDFChromatin structure and gene expression are regulated by posttranslational modifications (PTMs) on the N-terminal tails of histones. Mono-, di-, or trimethylation of lysine residues by histone lysine methyltransferases (HKMTases) can have activating or repressive functions depending on the position and context of the modified lysine. In Arabidopsis, trimethylation of lysine 9 on histone H3 (H3K9me3) is mainly associated with euchromatin and transcribed genes, although low levels of this mark are also detected at transposons and repeat sequences.
View Article and Find Full Text PDFHistone methylation recognition is accomplished by a number of evolutionarily conserved protein domains, including those belonging to the methylated lysine-binding Royal family of structural folds. One well-known member of the Royal family, the chromodomain, is found in the HP1/chromobox and CHD subfamilies of proteins, in addition to a small number of other proteins that are involved in chromatin remodeling and gene transcriptional silencing. Here we discuss the structure and function of the chromodomain within these proteins as methylated histone lysine binders and how the functions of these chromodomains can be modulated by additional post-translational modifications or binding to nucleic acids.
View Article and Find Full Text PDFCrit Rev Biochem Mol Biol
December 2010
Epigenetic regulation of gene transcription relies on an array of recurring structural domains that have evolved to recognize post-translational modifications on histones. The roles of bromodomains, PHD fingers, and the Royal family domains in the recognition of histone modifications to direct transcription have been well characterized. However, only through recent structural studies has it been realized that these basic folds are capable of interacting with increasingly more complex histone modification landscapes, illuminating how nature has concocted a way to accomplish more with less.
View Article and Find Full Text PDFExpression of the INK4b/ARF/INK4a tumor suppressor locus in normal and cancerous cell growth is controlled by methylation of histone H3 at lysine 27 (H3K27me) as directed by the Polycomb group proteins. The antisense noncoding RNA ANRIL of the INK4b/ARF/INK4a locus is also important for expression of the protein-coding genes in cis, but its mechanism has remained elusive. Here we report that chromobox 7 (CBX7) within the polycomb repressive complex 1 binds to ANRIL, and both CBX7 and ANRIL are found at elevated levels in prostate cancer tissues.
View Article and Find Full Text PDFNat Struct Mol Biol
June 2008
The tandem PHD finger-bromodomain, found in many chromatin-associated proteins, has an important role in gene silencing by the human co-repressor KRAB-associated protein 1 (KAP1). Here we report the three-dimensional solution structure of the tandem PHD finger-bromodomain of KAP1. The structure reveals a distinct scaffold unifying the two protein modules, in which the first helix, alpha(Z), of an atypical bromodomain forms the central hydrophobic core that anchors the other three helices of the bromodomain on one side and the zinc binding PHD finger on the other.
View Article and Find Full Text PDFTandem PHD and bromodomains are often found in chromatin-associated proteins and have been shown to cooperate in gene silencing. Each domain can bind specifically modified histones: the mechanisms of cooperation between these domains are unknown. We show that the PHD domain of the KAP1 corepressor functions as an intramolecular E3 ligase for sumoylation of the adjacent bromodomain.
View Article and Find Full Text PDFEpigenetic gene silencing in eukaryotes is regulated in part by lysine methylation of the core histone proteins. While histone lysine methylation is known to control gene expression through the recruitment of modification-specific effector proteins, it remains unknown whether nonhistone chromatin proteins are targets for similar modification-recognition systems. Here we show that the histone H3 methyltransferase G9a contains a conserved methylation motif with marked sequence similarity to H3 itself.
View Article and Find Full Text PDFResults Probl Cell Differ
January 2007
Chromatin-mediated gene transcription or silencing is a dynamic process in which binding of various proteins or protein complexes can displace nucleosomal histones from DNA to relieve repression or drive the gene into a highly repressed, silent state. Covalent modifications to DNA and histones associated with chromatin structural change play a crucial role in transcriptional regulation, with particular modifications on certain residues associated with a specific transcriptional outcome. In recent years a number of structural domains have been identified within chromatin-associated proteins, including DNA or RNA binding domains, protein-protein interaction domains and domains that recognize specific covalent modifications to histone tails.
View Article and Find Full Text PDFBiochem Biophys Res Commun
May 2006
Calexcitin (CE) is a Ca2+-binding protein which is expressed in neuronal cells and is a member of the sarcoplasmic Ca2+-binding protein subfamily. The peptide backbone of Ca2+-CE has been assigned by NMR and it shows that CE is composed of nine alpha-helices-forming four EF-hands and an additional helix near the C-terminus. A structural model of CE suggests the presence of a putative recessed hydrophobic pocket that may be involved in Ca2+-mediated protein-ligand interactions.
View Article and Find Full Text PDFCadherins are a large family of single-pass transmembrane proteins principally involved in Ca2+-dependent homotypic cell adhesion. The cadherin molecules comprise three domains, the intracellular domain, the transmembrane domain and the extracellular domain, and form large complexes with a vast array of binding partners (including cadherin molecules of the same type in homophilic interactions and cellular protein catenins), orchestrating biologically essential extracellular and intracellular signalling processes. While current, contrasting models for classic cadherin homophilic interaction involve varying numbers of specific repeats found in the extracellular domain, the structure of the domain itself clearly remains the main determinant of cell stability and binding specificity.
View Article and Find Full Text PDFActivation of glutamate decarboxylase (GAD) by calcium-bound calmodulin (CaM) is required for normal plant growth through regulation of gamma-aminobutyrate and glutamate metabolism. The interaction of CaM with the C-terminal domain of GAD is believed to induce dimerization of the enzyme, an event implicated for Ca(2+)-dependent enzyme activation. Here, we present the solution structure of CaM in complex with a dimer of peptides derived from the C-terminus of Petunia hybrida GAD.
View Article and Find Full Text PDFCalmodulin-regulated serine/threonine kinases (CaM kinases) play crucial roles in Ca2+-dependent signaling transduction pathways in eukaryotes. Despite having a similar overall molecular architecture of catalytic and regulatory domains, CaM kinases employ different binding modes for Ca2+/CaM recruitment which is required for their activation. Here we present a residual dipolar coupling (RDC)-based NMR approach to characterizing the molecular recognition of CaM with five different CaM kinases.
View Article and Find Full Text PDF