98%
921
2 minutes
20
Effective entrapment of enzymes in solid-phase materials is critical to their practical application. The entrapment generally stabilizes biological activity compared to soluble molecules and the material simplifies catalyst integration significantly. A silica sol-gel process based upon biological mechanisms of inorganic material formation (biomineralization) supports protein immobilization reactions within minutes. The material has high protein binding capacity and the catalytic activity of the enzyme is retained. We have demonstrated that both oligopeptides and selected proteins will mediate the biomineralization of silica and allow effective co-encapsulation of other proteins present in the reaction mixture. The detailed methods described here provide a simple and effective approach for molecular biologists, biochemists, and bioengineers to create stable, solid-phase biocatalysts that may be integrated within sensors, synthetic processes, reactive barriers, energy conversion materials, and other biotechnology concepts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-60761-895-9_8 | DOI Listing |
J Biomol Struct Dyn
September 2025
Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran.
Acetylesterase, produced by , plays a crucial role in deacetylating hemicellulose during pulp production. Thermostable variants of this enzyme, although rare, can significantly enhance industrial efficiency by retaining activity at high temperatures. This research aims to design a thermostable variant of acetylesterase from (EC 3.
View Article and Find Full Text PDFAppl Biochem Biotechnol
September 2025
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
Marine-derived enzymes often show distinct physiological properties and great potential for industrial use. Salt ions may improve the stability and expression efficiency of marine enzymes, which requires salt-resistant host based expression platform. Aspergillus oryzae of good protein expression and secretion was evaluated and explored for this purpose.
View Article and Find Full Text PDFAppl Biochem Biotechnol
September 2025
School of Biological Sciences, University of the Punjab, Quaid-E-Azam Campus, P.O. 54590, Lahore, Pakistan.
Recombinant DNA technology is widely used to produce industrially and pharmaceutically important proteins. In silico analysis, performed before executing wet lab experiments has been greatly helpful in this connection. A shift in protein analysis has been observed over the past decade, driven by advancements in bioinformatics databases, tools, software, and web servers.
View Article and Find Full Text PDFElife
September 2025
Chinese Academy of Medical Science Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
Influenza virus neuraminidase (NA) is a crucial target for protective antibodies, yet the development of recombinant NA protein as a vaccine has been held back by instability and variable expression. We have taken a pragmatic approach to improving expression and stability of NA by grafting antigenic surface loops from low-expressing NA proteins onto the scaffold of high-expressing counterparts. The resulting hybrid proteins retained the antigenic properties of the loop donor while benefiting from the high-yield expression, stability, and tetrameric structure of the loop recipient.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
School of Chemical Engineering and Technology, Zhengzhou University, Zhengzhou 450001, China.
d-Amino acid oxidase from (DAAO) is valuable for pharmaceutical and chemical synthesis due to its high enantioselectivity, but its poor thermostability limits extensive application. This study proposed a synergistic strategy of "sequence consensus design coupled with structure modification" to enhance DAAO thermostability. Through homologous sequence analysis and greedy algorithm-based optimization, a triple mutant M3 (S18T/V7I/Y132F) was obtained, showing a 3.
View Article and Find Full Text PDF