98%
921
2 minutes
20
The Arabidopsis genome encodes six members of microRNA395 (miR395) family previously determined to regulate the expression of ATP sulfurylase (APS) and the sulfate transporter SULTR2;1. However, the mRNA targets for the individual miR395 family members and the biological consequences produced by target gene regulation of each miR395 remain to be identified. In this study, a transgenic approach was employed to determine the mRNA targets for each miR395 family member as well as the role each member plays in plant growth under abiotic stress conditions. Overexpression of miR395c or miR395e retarded and accelerated, respectively, the seed germination of Arabidopsis under high salt or dehydration stress conditions. Despite a single nucleotide difference between miR395c and miR395e, the cleavage of mRNA targets, APS1, APS3, APS4 and SULTR2;1, was not same in miR395c- and miR395e-overexpressing plants. These results demonstrate that a given miRNA family containing a single nucleotide difference can guide the cleavage of various mRNA targets, thereby acting as a positive or negative regulator of seed germination under stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00425-010-1267-x | DOI Listing |
Appl Biochem Biotechnol
September 2025
Operating Room, Shanghai Tianyou Hospital, No.528, Zhennan Road, Putuo District, Shanghai, 200331, China.
Gastric cancer (GC) is a malignant tumor originating from the epithelial cells of the gastric mucosa. The 5-methylcytosine (mC) modification refers to the addition of a methyl group to the fifth carbon atom of cytosine in RNA molecules. This study aimed to investigate the role of NOL1/NOP2/SUN domain (NSUN)6 in GC and its underlying molecular mechanisms.
View Article and Find Full Text PDFMol Cell Biochem
September 2025
Department of Laboratory Medicine, The People's Hospital of Zhongjiang, No. 96, Dabei Street, Kaijiang Town, Zhongjiang County, Deyang City, 618100, Sichuan Province, China.
5-methylcytosine (m5C) methylation is a post-transcriptional modification of RNAs, and its dysregulation plays pro-tumorigenic roles in lung adenocarcinoma (LUAD). Here, this study elucidated the mechanism of action of NSUN2, a major m5C methyltransferase, on LUAD progression. mRNA expression was analyzed by quantitative PCR.
View Article and Find Full Text PDFInflamm Res
September 2025
Department of General Surgery, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, China.
Background: The roles of long non-coding RNAs (lncRNAs) in the progression of various human tumors have been extensively studied. However, their specific mechanisms and therapeutic potential in Triple-Negative Breast Cancer (TNBC) remain to be fully elucidated.
Materials And Methods: The qRT-PCR assay was utilized to assess the relative mRNA levels of TFAP2A-AS1, PHGDH, and miR-6892.
CPT Pharmacometrics Syst Pharmacol
September 2025
Certara UK Ltd., Level 2 Acero, 1 Concourse Way, Sheffield, UK.
Therapeutic oligonucleotides (TOs) represent an emerging modality, which offers a promising alternative treatment option, particularly for intracellular targets. The two types of TOs, antisense oligonucleotides (ASO) and small interfering RNAs (siRNAs), distribute highly into tissues, especially into the liver and the kidneys. However, molecular processes at the cellular level such as the uptake into the cell, endosomal escape, binding to the target mRNA, and redistribution back to the systemic circulation are not well characterized because experimental data and assays are lacking.
View Article and Find Full Text PDFFront Med (Lausanne)
August 2025
State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China.
Background: Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease. However, the biological role of mitochondrial metabolism (MM) in COPD remains poorly understood. This study aimed to explore the underlying mechanisms of MM in COPD using bioinformatics methods.
View Article and Find Full Text PDF