Structural rearrangements of the ribosome at the tRNA proofreading step.

Nat Struct Mol Biol

Département de Biologie et de Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.

Published: September 2010


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Discrimination of tRNA on the ribosome occurs in two consecutive steps: initial selection and proofreading. Here we propose a proofreading mechanism based on comparison of crystal structures of the 70S ribosome with an empty A site or with the A site occupied by uncharged cognate or near-cognate tRNA. We observe that ribosomal proteins S13, S19, L16, L25, L27 and L31 are actively involved in the proofreading of tRNA. We suggest that proofreading begins with the monitoring of the entire anticodon loop of tRNA by nucleotides from 16S rRNA (helices 18 and 44) of the small subunit and 23S rRNA (helix 69) of the large subunit with involvement of magnesium ions. Subsequently, the elbow region is scanned by rRNA (helices 38 and 89) and proteins from the large subunit determining whether to accommodate the acceptor end of tRNA in the peptidyl transferase center or not.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nsmb.1880DOI Listing

Publication Analysis

Top Keywords

trna proofreading
8
rrna helices
8
large subunit
8
trna
6
proofreading
5
structural rearrangements
4
rearrangements ribosome
4
ribosome trna
4
proofreading step
4
step discrimination
4

Similar Publications

Rigorous studies have characterized the aa-tRNA selection mechanism in bacteria, which is essential for maintaining translational fidelity. Recent investigations have identified critical distinctions in humans, such as the requirement of subunit rolling and a tenfold slower proofreading step. Although these studies captured key intermediates involved in tRNA selection, they did not elucidate the transitions of aa-tRNA between intermediates.

View Article and Find Full Text PDF

Rigorous studies have characterized the aa-tRNA selection mechanism in bacteria, which is essential for maintaining translational fidelity. Recent investigations have identified critical distinctions in humans, such as the requirement of subunit rolling and a tenfold slower proofreading step. Although these studies captured key intermediates involved in tRNA selection, they did not elucidate the transitions of aa-tRNA between intermediates.

View Article and Find Full Text PDF

Proofreading during translation of the genetic code is a key process for not only translation quality control but also for its modulation under stress conditions to provide fitness advantage. A major class of proofreading modules represented by editing domains of alanyl-tRNA synthetase (AlaRS-Ed) and threonyl-tRNA synthetase (ThrRS-Ed) features a common fold and an invariant Zn binding motif across life forms. Here, we reveal the structural basis and functional consequence along with the necessity for their operational dichotomy, i.

View Article and Find Full Text PDF

The efficiency with which aminoacyl-tRNA and GTP-bound translation elongation factor EF-Tu recognizes the A-site codon of the ribosome is dependent on codons and tRNA species present in the polypeptide (P) and exit (E) codon sites. To understand how codon context affects the efficiency of codon recognition by tRNA-bound EF-Tu, a genetic system was developed to select for fast translation through slow-translating codon combinations. Selection for fast translation through the slow-translated UCA-UAC pair, flanked by histidine codons, resulted in the isolation of an A25G base substitution mutant in the D-stem of an essential tRNA LeuZ, which recognizes the UUA and UUG leucine codons.

View Article and Find Full Text PDF

Selection of initiator tRNA and start codon by mammalian mitochondrial initiation factor 3 in leaderless mRNA translation.

Nucleic Acids Res

January 2025

Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan.

Article Synopsis
  • The mammalian mitochondrial protein synthesis system is responsible for synthesizing 13 crucial subunits for energy production, but the exact role of IF-3mt in translation initiation is still unclear.
  • Researchers created a mitochondrial translation system to explore IF-3mt's proofreading abilities, revealing it helps distinguish between different start codons for more accurate protein synthesis.
  • The findings indicate that IF-3mt not only supports initiation from standard AUG start codons but can also facilitate initiation from non-AUG codons like AUA, highlighting its adaptability in working with leaderless mRNAs.
View Article and Find Full Text PDF