98%
921
2 minutes
20
Discrimination of tRNA on the ribosome occurs in two consecutive steps: initial selection and proofreading. Here we propose a proofreading mechanism based on comparison of crystal structures of the 70S ribosome with an empty A site or with the A site occupied by uncharged cognate or near-cognate tRNA. We observe that ribosomal proteins S13, S19, L16, L25, L27 and L31 are actively involved in the proofreading of tRNA. We suggest that proofreading begins with the monitoring of the entire anticodon loop of tRNA by nucleotides from 16S rRNA (helices 18 and 44) of the small subunit and 23S rRNA (helix 69) of the large subunit with involvement of magnesium ions. Subsequently, the elbow region is scanned by rRNA (helices 38 and 89) and proteins from the large subunit determining whether to accommodate the acceptor end of tRNA in the peptidyl transferase center or not.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nsmb.1880 | DOI Listing |
Nat Commun
September 2025
Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA.
Rigorous studies have characterized the aa-tRNA selection mechanism in bacteria, which is essential for maintaining translational fidelity. Recent investigations have identified critical distinctions in humans, such as the requirement of subunit rolling and a tenfold slower proofreading step. Although these studies captured key intermediates involved in tRNA selection, they did not elucidate the transitions of aa-tRNA between intermediates.
View Article and Find Full Text PDFbioRxiv
June 2025
Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, 72701, USA.
Rigorous studies have characterized the aa-tRNA selection mechanism in bacteria, which is essential for maintaining translational fidelity. Recent investigations have identified critical distinctions in humans, such as the requirement of subunit rolling and a tenfold slower proofreading step. Although these studies captured key intermediates involved in tRNA selection, they did not elucidate the transitions of aa-tRNA between intermediates.
View Article and Find Full Text PDFNat Commun
April 2025
CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India.
Proofreading during translation of the genetic code is a key process for not only translation quality control but also for its modulation under stress conditions to provide fitness advantage. A major class of proofreading modules represented by editing domains of alanyl-tRNA synthetase (AlaRS-Ed) and threonyl-tRNA synthetase (ThrRS-Ed) features a common fold and an invariant Zn binding motif across life forms. Here, we reveal the structural basis and functional consequence along with the necessity for their operational dichotomy, i.
View Article and Find Full Text PDFPLoS Genet
February 2025
School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America.
The efficiency with which aminoacyl-tRNA and GTP-bound translation elongation factor EF-Tu recognizes the A-site codon of the ribosome is dependent on codons and tRNA species present in the polypeptide (P) and exit (E) codon sites. To understand how codon context affects the efficiency of codon recognition by tRNA-bound EF-Tu, a genetic system was developed to select for fast translation through slow-translating codon combinations. Selection for fast translation through the slow-translated UCA-UAC pair, flanked by histidine codons, resulted in the isolation of an A25G base substitution mutant in the D-stem of an essential tRNA LeuZ, which recognizes the UUA and UUG leucine codons.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan.