Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Development of an accurate and efficient molecular-based equine MHC class I typing method would facilitate the study of T lymphocyte immune responses in horses. Here, a DNA microarray was designed to detect expressed classical MHC class I genes comprising serologically defined equine leukocyte antigen (ELA)-A haplotypes represented in a closed Arabian horse breeding herd. Initially, cloning and sequencing of RT-PCR products were used to identify sequences associated with the ELA-A1, A4, and W11 haplotypes, and one undefined haplotype, in six horses. Subsequently, sequence-specific, conserved (positive control), and random nucleotide (negative control) 23- to 27-mer oligonucleotide microarray probes were designed and spotted onto an epoxy-coated masked slide using a robotic arrayer. Bulk RT-PCR products from each horse were biotinylated by nick translation, hybridized to the array, and detected using tyramide signal amplification. The microarray consistently detected eight of nine classical MHC class I transcripts and allowed ELA haplotypic associations to be made. Cloning and sequencing of RT-PCR products were then performed in a group of ELA disparate horses and ponies, in which six novel sequences were identified. This group was used to determine the specificity of the array. Overall, the microarray was more efficient than cloning and sequencing for detecting expressed classical MHC class I sequences in this defined population of horses, and was significantly more specific than serology. These results confirmed the utility of a microarray-based method for high-resolution MHC class I typing in the horse. With additional probes the array could be useful in a broader population.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3359745PMC
http://dx.doi.org/10.1007/s00251-010-0463-yDOI Listing

Publication Analysis

Top Keywords

mhc class
24
classical mhc
16
cloning sequencing
12
rt-pcr products
12
dna microarray
8
class sequences
8
sequences defined
8
defined population
8
class typing
8
expressed classical
8

Similar Publications

genome editing with CRISPR-Cas9 systems is generating worldwide attention and enthusiasm for the possible treatment of genetic disorders. However, the consequences of potential immunogenicity of the bacterial Cas9 protein and the AAV capsid have been the subject of considerable debate. Here, we model the antigen presentation in cells after gene editing by transduction of a human cell line with an AAV2 vector that delivers the Cas9 transgene.

View Article and Find Full Text PDF

Characterization of the extrinsic and intrinsic signatures and therapeutic vulnerability of small cell lung cancers.

Signal Transduct Target Ther

September 2025

State Key Laboratory of Molecular Oncology & Department of Medical Oncology & Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Small-cell lung cancer (SCLC), an aggressive neuroendocrine tumor strongly associated with exposure to tobacco carcinogens, is characterized by early dissemination and dismal prognosis with a five-year overall survival of less than 7%. High-frequency gain-of-function mutations in oncogenes are rarely reported, and intratumor heterogeneity (ITH) remains to be determined in SCLC. Here, via multiomics analyses of 314 SCLCs, we found that the ASCL1/MKI67 and ASCL1/CRIP2 clusters accounted for 74.

View Article and Find Full Text PDF

Natural killer (NK) cell licensing is an educational process that enhances responsiveness to activating signals in maturing NK cells and is predominantly regulated by major histocompatibility complex (MHC) class I-specific inhibitory signals. However, the role of non-MHC signalling in this process remains unclear. Here, we investigated the role of FcRγ, an adaptor protein associated with activating receptors, in the regulation of NK cell responsiveness.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic neurological disorder characterized by demyelination of the central nervous system (CNS), leading to a broad spectrum of physical and cognitive impairments. Myeloid cells within the CNS, including microglia and border-associated macrophages, play a central role in the neuroinflammatory processes associated with MS. Activation of these cells contributes to the local inflammatory response and promotes the recruitment of additional immune cells into the CNS.

View Article and Find Full Text PDF

Multiplex engineering using microRNA-mediated gene silencing in CAR T cells.

Front Immunol

September 2025

Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.

Background: Multiplex gene-edited chimeric antigen receptor (CAR) T-cell therapies face significant challenges, including potential oncogenic risks associated with double-strand DNA breaks. Targeted microRNAs (miRNAs) may provide a safer, functional, and tunable alternative for gene silencing without the need for DNA editing.

Methods: As a proof of concept for multiplex gene silencing, we employed an optimized miRNA backbone and gene architecture to silence T-cell receptor (TCR) and major histocompatibility complex class I (MHC-I) in mesothelin-directed CAR (M5CAR) T cells.

View Article and Find Full Text PDF