98%
921
2 minutes
20
The purpose of this study was to reveal factors that have an impact on the protein release kinetics from triglyceride microspheres prepared by spray congealing. We investigated the effect of protein particle size, morphology and distribution on protein release from microspheres by confocal laser scanning microscopy (CLSM)(.) The microspheres were loaded with three types of model particles made of FITC-labeled bovine serum albumin: freeze dried protein, spherical particles obtained by precipitation in the presence of PEG and micronized material. Investigation by light microscopy and laser light diffraction revealed that the freeze dried material consisted mainly of app. 29 μm elongated shaped particles. The precipitated BSA consisted mainly of 9.0 μm diameter spherically shaped particles while the micronized protein prepared by jet milling consisted of 4.9 μm sized rounded particles of high uniformity. Microspheres were embedded into a cold-curing resin and cut with a microtome. Subsequent investigation by CLSM revealed major differences of distribution of the polydisperse protein particles inside the microsphere sections depending on the type of BSA that was used. Particles of micronized and precipitated protein were distributed almost throughout the microsphere cross section. The protein distribution had a marked impact on the release kinetics in phosphate buffer. Large protein particles led to a considerably faster release than small ones. By staining the release medium we demonstrated that in all three cases there was a strong correlation between protein release and buffer intrusion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2010.07.110 | DOI Listing |
J Proteome Res
September 2025
School of Basic Medical Sciences, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province 330031, China.
Extracellular vesicles (EVs) are membranous structures consisting of lipid bilayers that are released by most cell types and serve as important mediators of intercellular communication. The HEK293T cell line model has gained considerable attention from the scientific community, particularly in the fields of engineering and drug delivery. Nevertheless, there is a dearth of systematic comparisons of the most prevalent EV isolation methodologies for HEK293T in terms of recovery and specificity.
View Article and Find Full Text PDFOMICS
September 2025
Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India.
Wings apart-like protein (WAPL) has emerged as a key player in maintaining genome integrity through its regulation of cohesin dynamics, which govern chromatin architecture and gene expression. WAPL mainly acts as a cohesin release factor and ensures proper chromosomal segregation during mitosis by promoting sister chromatid resolution. Owing to its prominent role in cell biology, WAPL dysregulation can cause genomic instability and disrupt chromosomal cohesion, leading to diseases such as cancer.
View Article and Find Full Text PDFPhysiol Plant
September 2025
Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, Saskatchewan, Canada.
Dormancy release and germination of the seed are two separate, but continuous phases controlled by both external (e.g., light and temperature) and internal (e.
View Article and Find Full Text PDFAPMIS
September 2025
Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat, Türkiye.
Pyroptosis is a lytic and pro-inflammatory regulated cell death pathway mediated by pores formed by the oligomerization of gasdermin proteins on cellular membranes. Different pro-inflammatory molecules such as interleukin-18 are released from these pores, promoting inflammation. Pyroptotic cell death has been implicated in many pathological conditions, including cancer and liver diseases.
View Article and Find Full Text PDFAPMIS
September 2025
Department of Chemistry, PSGR Krishnammal College for Women, Coimbatore, Tamil Nadu, India.
Kefir grains offer numerous health benefits, including boosting the immune system, alleviating digestive issues, and enhancing antimicrobial activity. They are rich in beneficial probiotic bacteria that promote gut health and support a balanced intestinal microbiota. "Beta-lactoglobulin (β-lg), a well-known milk protein," is used to create nanofibril structures that can serve as scaffolds.
View Article and Find Full Text PDF