98%
921
2 minutes
20
HnRNP G is a member of heterogeneous nuclear ribonucleoprotein (hnRNP) family with potent tumor suppressive activities. Human transformer-2-beta1 (hTra2-beta1) belongs to the arginine-serine rich like proteins and is found over-expressed in various human cancers. It was recently shown that hnRNP G and hTra2-beta1 exert antagonistic effects on alternative splicing. In our study we explored the impact of these two factors in tumor biology of endometrial cancer (EC). EC tissues (n = 139) were tested for hnRNP G and hTra2-beta1 expression on mRNA level by real time PCR and on protein level by immunohistochemistry. HTra2-beta1 mRNA level was found being induced in advanced International Federation of Gynecology and Obstetrics (FIGO) stages (p = 0.016). HnRNP G protein nuclear expression was found more prominent in patients without distant organ metastases (p = 0.033) and in FIGO Stages I/II group (p < 0.001). HTra2-beta1 protein nuclear levels were elevated in poorly differentiated (p = 0.044) and lymph node metastases (p = 0.003) cancers. Kaplan-Meier survival curves revealed that elevated hnRNP G mRNA (p = 0.029) and protein (p = 0.022) levels were associated with a favorable patient outcome. Multivariate Cox-regression analyses identified nuclear hnRNP G level [hazard ratio (HR) 0.468, p = 0.026) as well as hTra2-beta1 level (hazard ratio 5.760, p = 0.004) as independent prognostic factors for EC progression-free survival. Our results indicate that the antagonistic functional effects of hnRNP G and hTra2-beta1 on alternative splicing correlate directly to their opposite clinical effects on EC patient outcome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ijc.25544 | DOI Listing |
BMC Cancer
February 2015
Department of Obstetrics and Gynecology, University Medical Center Freiburg, Hugstetterstr 55, 79106, Freiburg, Germany.
Background: Estrogen receptor alpha (ERa/ESR1) expression is regulated by alternative splicing. Its most frequently detectable exon7 skipping isoform (ERaD7) is a dominant negative variant. Elevated expression of ERaD7 was already detected in endometrial cancer (EC), while its potential prognostic significance has not been characterized so far.
View Article and Find Full Text PDFEur J Gynaecol Oncol
February 2015
Tongji University School of Medicine, Shagnhai, China.
Purpose Of Investigation: Heterogeneous nuclear ribonucleoprotein (hnRNP) family possesses decreasing effect towards endometrial cancer (EC) and human transformer-2-betal (hTra2-betal) performs an intimate relationship with EC, either. Recent study shows that hnRNPs and hTra2-betal regulate the genetic expression, which is concerned with estrogen receptor (ER).
Materials And Methods: The present study was designed to investigate the link between ER and hnRNPs or hTra2-betal in the prognosis of EC patients by Real-time PCR and immunohistochemisty (IHC).
Int J Cancer
May 2011
Department of Obstetrics and Gynecology, Freiburg University Medical Center, 79106 Freiburg, Germany.
HnRNP G is a member of heterogeneous nuclear ribonucleoprotein (hnRNP) family with potent tumor suppressive activities. Human transformer-2-beta1 (hTra2-beta1) belongs to the arginine-serine rich like proteins and is found over-expressed in various human cancers. It was recently shown that hnRNP G and hTra2-beta1 exert antagonistic effects on alternative splicing.
View Article and Find Full Text PDFHum Genet
December 2003
Institute of Human Genetics, University of Bonn, Wilhelmstrasse 31, 53111 Bonn, Germany.
Proximal spinal muscular atrophy (SMA) is a neuromuscular disorder caused by homozygous mutations of the SMN1 gene. SMN1 interacts with multiple proteins with functions in snRNP biogenesis, pre-mRNA splicing and presumably neural transport. SMN2, a nearly identical copy of SMN1, produces predominantly exon 7-skipped transcripts, whereas SMN1 mainly produces full-length transcripts.
View Article and Find Full Text PDFHum Mol Genet
August 2002
Institute of Human Genetics, University of Bonn, Bonn, Germany.
Proximal spinal muscular atrophy (SMA) is a common motor neuron disease caused by homozygous loss of the survival motor neuron gene (SMN1). SMN2, a nearly identical copy of the gene and present in all SMA patients, fails to provide protection from SMA, due to the disruption of an exonic splicing enhancer (ESE) by a single translationally silent nucleotide exchange, which causes alternative splicing of SMN2 exon 7. Identification of splicing factors that stimulate exon 7 inclusion and thereby produce sufficient amounts of full-length transcripts from the SMN2 gene is of great importance for therapy approaches.
View Article and Find Full Text PDF