98%
921
2 minutes
20
Myristoylation is critical for membrane association of Src kinases, but a role for myristate in regulating other aspects of Src biology has not been explored. In the c-Abl tyrosine kinase, myristate binds within a hydrophobic pocket at the base of the kinase domain and latches the protein into an autoinhibitory conformation. A similar pocket has been predicted to exist in c-Src, raising the possibility that Src might also be regulated by myristoylation. Here we show that in contrast to the case for c-Abl, myristoylation exerts a positive effect on c-Src kinase activity. We also demonstrate that myristoylation and membrane binding regulate c-Src ubiquitination and degradation. Nonmyristoylated c-Src exhibited reduced kinase activity but had enhanced stability compared to myristoylated c-Src. We then mutated critical residues in the predicted myristate binding pocket of c-Src. Mutation of L360 and/or E486 had no effect on c-Src membrane binding or localization. However, constructs containing a T456A mutation were partially released from the membrane, suggesting that mutagenesis could induce c-Src to undergo an artificial myristoyl switch. All of the pocket mutants exhibited decreased kinase activity. We concluded that myristoylation and the pocket residues regulate c-Src, but in a manner very different from that for c-Abl.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2937550 | PMC |
http://dx.doi.org/10.1128/MCB.00246-10 | DOI Listing |
Lab Anim Res
September 2025
Department of Pathology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan.
Background: Stroke-prone spontaneously hypertensive rats (SHRSP) exhibit slow-twitch muscle-specific hypotrophy compared with normotensive Wistar-Kyoto rats (WKY). Because slow-twitch muscles are prone to disuse atrophy, SHRSP may experience both disuse atrophy and impaired recovery from it. This study investigated the response of SHRSP to disuse atrophy and subsequent recovery, using WKY as a control.
View Article and Find Full Text PDFActa Pharmacol Sin
September 2025
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
The anti-HER2 antibody‒drug conjugate (ADC) DS-8201 presents new hope for patients with advanced HER2-positive tumors. Its clinical application, however, is hindered by serious adverse reactions and reduced efficacy following long-term treatment. In this study, we investigated the factors influencing the sensitivity of DS-8201 and developed effective combination regimens to optimize its therapeutic efficacy.
View Article and Find Full Text PDFActa Pharmacol Sin
September 2025
Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
Non-small cell lung cancer (NSCLC) is an aggressive malignancy with a poor prognosis. Abnormal expression of focal adhesion kinase (FAK) is closely linked to NSCLC progression, highlighting the need for effective FAK inhibitors in NSCLC treatment. In this study we conducted high-throughput virtual screening combined with cellular assays to identify potential FAK inhibitors for NSCLC treatment.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Department of Microbiology, Institute of Biology, University of Kassel, 34132 Kassel, Germany.
Casein kinase 1 (CK1) family members are crucial for ER-Golgi trafficking, calcium signalling, DNA repair, transfer RNA (tRNA) modifications, and circadian rhythmicity. Whether and how substrate interactions and kinase autophosphorylation contribute to CK1 plasticity remains largely unknown. Here, we undertake a comprehensive phylogenetic, cellular, and molecular characterization of budding yeast CK1 Hrr25 and identify human CK1 epsilon (CK1ϵ) as its ortholog.
View Article and Find Full Text PDFBioorg Med Chem Lett
September 2025
Galapagos SASU, 102 avenue Gaston Roussel, 93230 Romainville, France. Electronic address:
The salt-inducible kinase (SIK) family encompasses three isoforms, SIK1, SIK2, and SIK3, which are members of the AMP-activated protein kinase (AMPK) family of serine/threonine protein kinases. SIK inhibition has emerged as a potential therapeutic approach across multiple indications, as SIKs regulate a diverse set of physiological processes such as metabolism, bone remodeling, immune response, malignancies, skin pigmentation, and circadian rhythm. Within isoform-specific SIK inhibitors there is a need to understand the distinct role of each protein, and here we describe the first SIK1 selective inhibitors.
View Article and Find Full Text PDF