98%
921
2 minutes
20
The maize (Zea mays) transposable element Dissociation (Ds) was mobilized for large-scale genome mutagenesis and to study its endogenous biology. Starting from a single donor locus on chromosome 10, over 1500 elements were distributed throughout the genome and positioned on the maize physical map. Genetic strategies to enrich for both local and unlinked insertions were used to distribute Ds insertions. Global, regional, and local insertion site trends were examined. We show that Ds transposed to both linked and unlinked sites and displayed a nonuniform distribution on the genetic map around the donor r1-sc:m3 locus. Comparison of Ds and Mutator insertions reveals distinct target preferences, which provide functional complementarity of the two elements for gene tagging in maize. In particular, Ds displays a stronger preference for insertions within exons and introns, whereas Mutator insertions are more enriched in promoters and 5'-untranslated regions. Ds has no strong target site consensus sequence, but we identified properties of the DNA molecule inherent to its local structure that may influence Ds target site selection. We discuss the utility of Ds for forward and reverse genetics in maize and provide evidence that genes within a 2- to 3-centimorgan region flanking Ds insertions will serve as optimal targets for regional mutagenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2910982 | PMC |
http://dx.doi.org/10.1105/tpc.109.073452 | DOI Listing |
Urol Oncol
September 2025
Nutritional, Genes and Human Disease Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh. Electronic address:
Background: Understanding the mutational landscape is critical for elucidating the molecular mechanisms driving cancer progression. This study aimed to profile somatic mutations in bladder cancer patients (N=7) from Bangladesh to provide insights into the genetic alterations underlying this malignancy.
Methods: We performed targeted sequencing of 50 oncogenes and tumor suppressor genes using the Ion AmpliSeq Cancer Hotspot Panel v2 on tumor and matched blood samples from seven bladder cancer patients.
JCO Precis Oncol
September 2025
Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy.
Purpose: Tumor comprehensive genomic profiling (CGP) may detect potential germline pathogenic/likely pathogenic (P/LP) alterations as secondary findings. We analyzed the frequency of potentially germline variants and large rearrangements (LRs) in the RATIONAL study, an Italian multicenter, observational clinical trial that collects next-generation sequencing-based tumor profiling data, and evaluated how these findings were managed by the enrolling centers.
Patients And Methods: Patients prospectively enrolled in the pathway-B of the RATIONAL study and undergoing CGP with the FoundationOne CDx assays were included in the analysis.
Proc Natl Acad Sci U S A
September 2025
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139.
The mutagenic translesion synthesis (TLS) pathway, which is critically dependent on REV1's ability to recruit inserter TLS polymerases and the POLζ extender polymerase, enables cancer cells to bypass DNA lesions while introducing mutations that likely contribute to the development of chemotherapy resistance and secondary malignancies. Targeting this pathway represents a promising therapeutic strategy. Here, we demonstrate that the expression of the C-terminal domain (CTD) of human REV1, a ca.
View Article and Find Full Text PDFGenome Biol
September 2025
Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.
Background: Centromeres are crucial for precise chromosome segregation and maintaining genome stability during cell division. However, their evolutionary dynamics, particularly in polyploid organisms with complex genomic architectures, remain largely enigmatic. Allopolyploid wheat, with its well-defined hierarchical ploidy series and recent polyploidization history, serves as an excellent model to explore centromere evolution.
View Article and Find Full Text PDFTheor Appl Genet
September 2025
Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands.
Potato bolters are caused by excision of a transposon from the StCDF1.3 allele, resulting in a somatic mutant with late maturity. Somatic mutations during vegetative propagation can lead to novel genotypes, known as sports.
View Article and Find Full Text PDF