98%
921
2 minutes
20
Both in diffusion tensor imaging (DTI) and in generalized diffusion tensor imaging (GDTI) the relation between the diffusion tensor and the measured apparent diffusion coefficients is given by a tensorial equation, which needs to be inverted in order to solve the diffusion tensor. The traditional way to do this does not preserve the tensorial structure of the equation, which we consider a weakness in the method. For a physically correct measurement procedure, the condition number of the acquisition scheme, which is a determinant of the noise behavior, needs to be rotationally invariant. The method which traditionally is used to find such schemes, however, is cumbersome and mathematically unsatisfactory. This is considered a second weakness, closely connected to the first. In this paper we present an alternative inversion of the diffusion tensor equation, which does preserve the tensor form, for arbitrary order, and which is named the direct tensor solution (DTS). The DTS is derived under the assumption that the apparent diffusion coefficient in any direction is known, i.e. in the infinite acquisition scheme. Whenever the DTS is valid for a given finite acquisition scheme and for a given order, the condition number is rotationally invariant. The DTS provides a compact, algebraic procedure to check this rotational invariance. We also present a method to construct acquisition schemes, for which the DTS is valid for the measurement of higher-order diffusion tensors. Furthermore, the DTS leads to other mathematical insights, such as tensorial relationships between diffusion tensors of different orders, and a more general understanding of the Platonic Variance Method, which we published before.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmr.2010.05.016 | DOI Listing |
J Magn Reson Imaging
September 2025
Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan.
Br J Neurosurg
September 2025
Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
Introduction: Radiosurgery targeting the thalamus has long been used to treat refractory pain, with medial thalamotomy as a key approach. Traditionally, targeting relied on indirect methods based on anatomical atlases, which do not account for individual variations in brain connectivity. Recent advances in connectomic-guided stereotactic radiosurgery have improved precision in the treatment of movement disorders, but their application to pain management remains underexplored.
View Article and Find Full Text PDFParkinsonism Relat Disord
September 2025
Translational and Clinical Research Institute, Newcastle University, UK.
Introduction: Dysfunction of the glymphatic system is thought to lead to build up of toxic proteins including β-amyloid and α-synuclein, and thus may be involved in dementia with Lewy bodies (DLB) and Alzheimer's disease (AD). The Diffusion Tensor Image Analysis Along the Perivascular Space (DTI-ALPS) index has been proposed as a marker of glymphatic function.
Aims: To investigate DTI-ALPS in mild cognitive impairment (MCI) and dementia, and determine its relationship with cognitive decline, and biomarkers of neurodegeneration.
Front Hum Neurosci
August 2025
Signal Processing Laboratory (LTS5), École Polytechnique Féderale de Lausanne (EPFL), Lausanne, Switzerland.
Introduction: Absence of language development is a condition encountered across a large range of neurodevelopmental disorders, including a significant proportion of children with autism spectrum disorder. The neurobiological underpinnings of non-verbal ASD (nvASD) remain poorly understood.
Methods: This study employed multimodal MRI to investigate white matter (WM) microstructural abnormalities in nvASD, focusing on language-related pathways.
Alzheimer's disease (AD) has become a great concern for society in general and clinicians specifically because of its high morbidity, relative lack of awareness of its characteristics, and low diagnosis and treatment rates. Worldwide, there is a lack of effective treatments for slowing the progression of AD in clinical practice. Thus, the management of patients in the preclinical phase of AD (PPAD) has been identified to be highly important for addressing this concern.
View Article and Find Full Text PDF