Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The advent of stem cell based therapies has brought regenerative medicine into an increased focus as a part of the modern medicine practice, with a potential to treat a myriad of intractable diseases in the future. Stem cells reside in a complex microenvironment presenting them with a multitude of potential cues that are chemical, physical, and mechanical in nature. Conventional techniques used for experiments involving stem cells can only poorly mimic the physiological context, and suffer from imprecise spatial and temporal control, low throughput, lack of scalability and reproducibility, and poor representation of the mechanical and physical cell microenvironment. Novel lab-on-a-chip platforms, on the other hand, can much better mimic the complexity of in vivo tissue milieu and provide a greater control of the parameter variation in a high throughput and scalable manner. This capability may be especially important for understanding the biology and cementing the clinical potential of stem cell based therapies. Here we review microfabrication- and microfluidics-based approaches to investigating the complex biology of stem cell responses to changes in the local microenvironment. In particular, we categorize each method based on the types of controlled inputs it can have on stem cells, including soluble biochemical factors, extracellular matrix interactions, homotypic and heterotypic cell-cell signaling, physical cues (e.g. oxygen tension, pH, temperature), and mechanical forces (e.g. shear, topography, rigidity). Finally, we outline the methods to perform large scale observations of stem cell phenotypes and high-throughput screening of cellular responses to a combination of stimuli, and many new emerging technologies that are becoming available specifically for stem cell applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c004689bDOI Listing

Publication Analysis

Top Keywords

stem cell
24
stem cells
12
stem
9
cell based
8
based therapies
8
cell
7
lab-on-a-chip devices
4
devices emerging
4
emerging platform
4
platform stem
4

Similar Publications

Introduction: Allogeneic hematopoietic stem-cell transplantation (allo-HSCT) requires reliable vascular access for medication, transfusion, and blood sampling, which often involves painful venipuncture. This prospective study evaluated a novel dual peripherally inserted central venous catheter (PICC) technique to reduce venipuncture frequency in allo-HSCT recipients.

Methods: The study enrolled 29 allo-HSCT recipients.

View Article and Find Full Text PDF

Transformative Therapies for Wound Care: Insights into Tissue Engineering and Regenerative Medicine.

Adv Exp Med Biol

September 2025

Department of Stem Cells & Regenerative Medicine, Center for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India.

Wound healing is a dynamic and complex process that consists of four interconnected phases: hemostasis, inflammation, proliferation, and remodeling. This complex process is based on the coordinated actions of growth factors, cytokines, and other cellular interactions. However, conditions such as diabetes and chronic illnesses can disrupt this process and lead to nonhealing wounds or chronic ulcers.

View Article and Find Full Text PDF

Clinical Efficacy of Stem Cell Therapy in Neurotraumatic and Neurodegenerative Conditions: A Comparative Review.

Tissue Eng Regen Med

September 2025

Department of Biomedical Science, Catholic Kwandong University, 24 Beomil-ro 579beon-gil, Gangneung-si, Gangwon-do, South Korea.

Background: Neurotraumatic conditions, such as spinal cord injury, brain injury, and neurodegenerative conditions, such as amyotrophic lateral sclerosis, pose a challenge to the field of rehabilitation for its complexity and nuances in management. For decades, the use of cell therapy in treatment of neurorehabilitation conditions have been explored to complement the current, mainstay treatment options; however, a consensus for standardization of the cell therapy and its efficacy has not been reached in the medical community. This study aims to provide a comparative review on the very topic of cell therapy use in neurorehabilitation conditions in an attempt to bridge the gap in knowledge.

View Article and Find Full Text PDF

This review analyzes Russian and international literature on the treatment of bilateral limbal stem cell deficiency (LSCD), focusing on the use of Simple Oral Mucosal Epithelial Transplantation (SOMET) as a surgical method for restoring the ocular surface. Contemporary sources report 64 cases of SOMET used in the treatment of bilateral LSCD: 35 cases of chemical burns, 16 of thermal burns, 7 cases of Stevens-Johnson syndrome, 1 keratitis, 1 cicatricial pemphigoid, 1 dermoid, 1 case of drug-induced LSCD (mitomycin C), etc. Notably, all transplantations resulted in complete epithelialization, and in 3 cases, penetrating keratoplasty was subsequently performed with favorable functional and anatomical outcomes.

View Article and Find Full Text PDF

The rise in cancer patients could lead to an increase in intensive care units (ICUs) admissions. We explored differences in treatment practices and outcomes of invasive therapies between patients with sepsis with and without cancer. Adults from 2008 to 2019 admitted to the ICU for sepsis were extracted from the databases MIMIC-IV and eICU-CRD.

View Article and Find Full Text PDF