Publications by authors named "Kshitiz Gupta"

Electroporation-mediated gene delivery is a cornerstone of synthetic biology, offering several advantages over other methods: higher efficiencies, broader applicability, and simpler sample preparation. Yet, electroporation protocols are often challenging to integrate into highly multiplexed workflows, owing to limitations in their scalability and tunability. These challenges ultimately increase the time and cost per transformation.

View Article and Find Full Text PDF

Lignin is composed of phenylpropanoid monomers linked by ether and carbon-carbon bonds to form a complex heterogeneous structure. Bond-specific studies of lignin-modifying enzymes (LMEs; e.g.

View Article and Find Full Text PDF

Introduction: Studying plant-microbe interactions is one of the key elements in understanding the path to sustainable agricultural practices. These interactions play a crucial role in ensuring survival of healthy plants, soil and microbial communities. Many platforms have been developed over the years to isolate these highly complex interactions however, these are designed for small model plants.

View Article and Find Full Text PDF
Article Synopsis
  • Mass spectrometry (MS) is a powerful tool for detecting chemical species but has limitations in processing speed, which can be improved by integrating it with microfluidics.
  • The Drop-NIMS platform combines a microfluidic device with a unique MS technique that allows for the random mixing of droplets to create a library of enzymatic reactions directly on the NIMS surface, minimizing handling.
  • This method was successfully used to quickly screen low-volume enzymatic reactions, identifying various glycoside hydrolases relevant to industries like food and biofuels, demonstrating its versatility and ease of use for analyzing small molecule metabolites.
View Article and Find Full Text PDF

Non-contact micro-manipulation tools have enabled invasion-free studies of fragile synthetic particles and biological cells. Rapid electrokinetic patterning (REP) traps target particles/cells, suspended in an electrolyte, on an electrode surface. This entrapment is electrokinetic in nature and thus depends strongly on the suspension medium's properties.

View Article and Find Full Text PDF

Trapping, sorting, transportation, and manipulation of synthetic microparticles and biological cells enable investigations in their behavior and properties. Microfluidic techniques like rapid electrokinetic patterning (REP) provide a non-invasive means to probe into the nature of these micro and nanoparticles. The opto-electrically induced nature of a REP micro vortex allows tuning of the trap characteristics in real-time.

View Article and Find Full Text PDF

N-acylated homoserine lactone lactonase which cleave the Acyl homoserine lactone molecules produced by biofilm-forming pathogens and silver nano-particles (AgNPs), are known for their antibacterial effect against several Gram-positive and Gram-negative bacteria. In this study, AgNPs were coated with N-acylated homoserine lactonase protein (AgNPs-AiiA) isolated from sp. ZA12.

View Article and Find Full Text PDF

Quorum sensing (QS) refers to chemical signalling between micro-organisms and defines a social concord among them. Once a threshold of signal is accumulated, certain virulent traits are regulated within bacteria in response to the surrounding environment. These virulence traits are known to contribute in the pathogenicity of bacterial diseases.

View Article and Find Full Text PDF

Background/aim: Rhabdomyosarcoma is the most common type of pediatric soft-tissue sarcoma. Among the subsets of this disease, alveolar rhabdomyosarcoma (ARMS) expressing paired box 3 (PAX3) and forkhead box O1 (PAX3-FOXO1) fusion oncoprotein has the worst prognosis. The goal of this study was to investigate the chemotherapeutic effects of sphingosine on PAX3-FOXO1-positive ARMS cells [tumor protein p53 (TP53)-mutated RH30 and TP53 wild-type RH18 cells].

View Article and Find Full Text PDF

Marginal zone B cells (MZB) participate in the early immune response to several pathogens. In this study, we show that in μMT mice infected with Leishmania donovani, CD8 T cells displayed a greater cytotoxic potential and generated more effector memory cells compared with infected wild type mice. The frequency of parasite-specific, IFN-γ(+) CD4 T cells was also increased in μMT mice.

View Article and Find Full Text PDF
Article Synopsis
  • The rise of stem cell therapies is enhancing regenerative medicine, offering the potential to treat difficult diseases in modern medical practices.
  • Traditional experimental techniques struggle to accurately replicate the natural environments stem cells reside in, leading to various limitations such as low scalability and imprecise control.
  • Innovative lab-on-a-chip technologies provide better simulation of in vivo conditions and allow for precise manipulation of various factors that influence stem cell behavior, aiding in understanding their biology and clinical application.
View Article and Find Full Text PDF

Ischemia induces the production of angiogenic cytokines and the homing of bone-marrow-derived angiogenic cells (BMDACs), but these adaptive responses become impaired with aging because of reduced expression of hypoxia-inducible factor (HIF)-1alpha. In this study, we analyzed the effect of augmenting HIF-1alpha levels in ischemic limb by intramuscular injection of AdCA5, an adenovirus encoding a constitutively active form of HIF-1alpha, and intravenous administration of BMDACs that were cultured in the presence of the prolyl-4-hydroxylase inhibitor dimethyloxalylglycine (DMOG) to induce HIF-1 expression. The combined therapy increased perfusion, motor function, and limb salvage in old mice subjected to femoral artery ligation.

View Article and Find Full Text PDF

In this report, we describe using ultraviolet (UV)-assisted capillary force lithography (CFL) to create a model substratum of anisotropic micro- and nanotopographic pattern arrays with variable local density for the analysis of cell-substratum interactions. A single cell adhesion substratum with the constant ridge width (1 microm), and depth (400 nm) and variable groove widths (1-9.1 microm) allowed us to characterize the dependence of cellular responses, including cell shape, orientation, and migration, on the anisotropy and local density of the variable micro- and nanotopographic pattern.

View Article and Find Full Text PDF

Recent evidence from different research areas has revealed a novel mechanism of cell-cell communication by spontaneous intercellular transfer of cellular components (ICT). Here we studied this phenomenon by co-culturing different cells that contain distinct levels of proteins or markers for the plasma membrane or cytoplasm. We found that a variety of transmembrane proteins are transferable between multiple cell types.

View Article and Find Full Text PDF

Background: Prediction of function of proteins on the basis of structure and vice versa is a partially solved problem, largely in the domain of biophysics and biochemistry. This underlies the need of computational and bioinformatics approach to solve the problem. Large and organized latent knowledge on protein classification exists in the form of independently created protein classification databases.

View Article and Find Full Text PDF

Background: The chemical property and biological function of a protein is a direct consequence of its primary structure. Several algorithms have been developed which determine alignment and similarity of primary protein sequences. However, character based similarity cannot provide insight into the structural aspects of a protein.

View Article and Find Full Text PDF