98%
921
2 minutes
20
Near infrared (NIR) spectroscopy is a non-destructive (vibrational spectroscopy based) measurement technique for many multicomponent chemical systems, including products of petroleum (crude oil) refining and petrochemicals, food products (tea, fruits, e.g., apples, milk, wine, spirits, meat, bread, cheese, etc.), pharmaceuticals (drugs, tablets, bioreactor monitoring, etc.), and combustion products. In this paper we have compared the abilities of nine different multivariate classification methods: linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), regularized discriminant analysis (RDA), soft independent modeling of class analogy (SIMCA), partial least squares (PLS) classification, K-nearest neighbor (KNN), support vector machines (SVM), probabilistic neural network (PNN), and multilayer perceptron (ANN-MLP) - for gasoline classification. Three sets of near infrared (NIR) spectra (450, 415, and 345 spectra) were used for classification of gasolines into 3, 6, and 3 classes, respectively, according to their source (refinery or process) and type. The 14,000-8000 cm(-1) NIR spectral region was chosen. In all cases NIR spectroscopy was found to be effective for gasoline classification purposes, when compared with nuclear magnetic resonance (NMR) spectroscopy or gas chromatography (GC). KNN, SVM, and PNN techniques for classification were found to be among the most effective ones. Artificial neural network (ANN-MLP) approach based on principal component analysis (PCA), which was believed to be efficient, has shown much worse results. We hope that the results obtained in this study will help both further chemometric (multivariate data analysis) investigations and investigations in the sphere of applied vibrational (infrared/IR, near-IR, and Raman) spectroscopy of sophisticated multicomponent systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2010.05.013 | DOI Listing |
Proc Biol Sci
September 2025
Division of Integrative Anatomical Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, USA.
Red blood cell (RBC) size constrains the rate of diffusion of gases between (i) the environment and the capillary beds of the gas exchanger and (ii) the blood and organs. In birds, small RBCs with a high surface area to volume ratio permit a high O diffusion capacity and facilitate sustained, vigorous exercise. Unfortunately, our knowledge of archosaur cardiovascular evolution is incomplete without fossilized RBCs and blood vessels.
View Article and Find Full Text PDFPLoS One
September 2025
Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
Sea surface temperature of the Red Sea has increased by up to 0.45 °C per decade over the last 30 years, and coral bleaching events are becoming more frequent. A reef bleaching event was observed in October 2020, whereby some parts of the Red Sea experienced more than 12 °C-weeks.
View Article and Find Full Text PDFNanomicro Lett
September 2025
Department of Mechanical, Aerospace & Biomedical Engineering, University of Tennessee, Knoxville, Knoxville, TN, 37996, USA.
3D printing, as a versatile additive manufacturing technique, offers high design flexibility, rapid prototyping, minimal material waste, and the capability to fabricate complex, customized geometries. These attributes make it particularly well-suited for low-temperature hydrogen electrochemical conversion devices-specifically, proton exchange membrane fuel cells, proton exchange membrane electrolyzer cells, anion exchange membrane electrolyzer cells, and alkaline electrolyzers-which demand finely structured components such as catalyst layers, gas diffusion layers, electrodes, porous transport layers, and bipolar plates. This review provides a focused and critical summary of the current progress in applying 3D printing technologies to these key components.
View Article and Find Full Text PDFFood Res Int
November 2025
SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China. Electronic address:
In the present study, cockles were utilized as the raw material to investigate how different salt concentrations and fermentation periods influence the physicochemical indices, microbial community shifts, and volatile flavor components of cockle paste. Through the analysis of volatile flavor substances via GC-IMS, a total of 77 volatile flavor compounds were identified, among which aldehydes accounted for the largest proportion. High-throughput 16S rDNA sequencing was applied to decode the composition of dominant microbiota in the cockle paste samples.
View Article and Find Full Text PDFACS Omega
September 2025
Centre of Petroleum Engineering and Geosciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Kingdom of Saudi Arabia.
The global warming crisis, traceable to the rise in greenhouse gas emissions, has called for more proactive measures to curb the emission levels. To this effect, several technologies have been suggested. Out of the lot, carbon capture, utilization, and storage have been identified as one of the most feasible and pragmatic methods.
View Article and Find Full Text PDF