A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Maximizing coupling strength of magnetically anchored surgical instruments: how thick can we go? | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The Magnetic Anchoring and Guidance System (MAGS) includes an external magnet that controls intra-abdominal surgical instruments via magnetic attraction forces. We have performed NOTES (Natural Orifice Transluminal Endoscopic Surgery) and LESS (Laparoendoscopic Single Site) procedures using MAGS instruments in porcine models with up to 2.5-cm-thick abdominal walls, but this distance may not be sufficient in some humans. The purpose of this study was to determine the maximal abdominal wall thickness for which the current MAGS platform is suitable.

Methods: Successive iterations of prototype instruments were developed; those evaluated in this study include external (134-583 g, 38-61 mm diameter) and internal (8-39 g, 10-22 mm diameter) components using various grades, diameters, thicknesses, and stacking/shielding/focusing configurations of permanent Neodymium-iron-boron (NdFeB) magnets. Nine configurations were tested for coupling strength across distances of 0.1-10 cm. The force-distance tests across an air medium were conducted at 0.5-mm increments using a robotic arm fitted with a force sensor. A minimum theoretical instrument drop-off (decoupling) threshold was defined as the separation distance at which force decreased below the weight of the heaviest internal component (39 g).

Results: Magnetic attraction forces decreased exponentially over distance. For the nine configurations tested, the average forces were 3,334 ± 1,239 gf at 0.1 cm, 158 ± 98 gf at 2.5 cm, and 8.7 ± 12 gf at 5 cm; the drop-off threshold was 3.64 ± 0.8 cm. The larger stacking configurations and magnets yielded up to a 592% increase in attraction force at 2.5 cm and extended the drop-off threshold distance by up to 107% over single-stack anchors. For the strongest configuration, coupling force ranged from 5,337 gf at 0.1 cm to 0 gf at 6.95 cm and yielded a drop-off threshold distance of 4.78 cm.

Conclusions: This study suggests that the strongest configuration of currently available MAGS instruments is suitable for clinically relevant abdominal wall thicknesses. Further platform development and optimization are warranted.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00464-010-1149-0DOI Listing

Publication Analysis

Top Keywords

drop-off threshold
12
coupling strength
8
surgical instruments
8
magnetic attraction
8
attraction forces
8
mags instruments
8
abdominal wall
8
configurations tested
8
threshold distance
8
strongest configuration
8

Similar Publications