Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Current treatment of traumatic craniofacial injuries often involves early free tissue transfer, even if the recipient site is contaminated or lacks soft tissue coverage. There are no current tissue engineering strategies to definitively regenerate tissues in such an environment at an early time point. For a tissue engineering approach to be employed in the treatment of such injuries, a two-stage approach could potentially be used. The present study describes methods for fabrication, characterization, and processing of porous polymethylmethacrylate (PMMA) space maintainers for temporary retention of space in bony craniofacial defects. Carboxymethylcellulose hydrogels were used as a porogen. Implants with controlled porosity and pore interconnectivity were fabricated by varying the ratio of hydrogel:polymer and the amount of carboxymethylcellulose within the hydrogel. The in vivo tissue response to the implants was observed by implanting solid, low-porosity, and high-porosity implants (n = 6) within a nonhealing rabbit mandibular defect that included an oral mucosal defect to allow open communication between the oral cavity and the mandibular defect. Oral mucosal wound healing was observed after 12 weeks and was complete in 3/6 defects filled with solid PMMA implants and 5/6 defects filled with either a low- or high-porosity PMMA implant. The tissue response around and within the pores of the two formulations of porous implants tested in vivo was characterized, with the low-porosity implants surrounded by a minimal but well-formed fibrous capsule in contrast to the high-porosity implants, which were surrounded and invaded by almost exclusively inflammatory tissue. On the basis of these results, PMMA implants with limited porosity hold promise for temporary implantation and space maintenance within clean/contaminated bone defects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3003916PMC
http://dx.doi.org/10.1089/ten.tec.2010.0046DOI Listing

Publication Analysis

Top Keywords

tissue
8
soft tissue
8
tissue coverage
8
porous polymethylmethacrylate
8
space maintainers
8
bone defects
8
tissue engineering
8
implants
8
tissue response
8
high-porosity implants
8

Similar Publications

Unlabelled: In 2024, the 200th anniversary of the first domestic work devoted to the study of gunshot injury was celebrated.

Objective: To present little-known information from the biography of its author, Professor P.P.

View Article and Find Full Text PDF

[Mechanism and features of blood vessel damage around the gunshot wound canal].

Sud Med Ekspert

January 2025

Bureau of Forensic Medical Expertise, Saint-Petersburg, Russia.

Unlabelled: Forming wound canal is one of the main signs of gunshot wound. Its features are related to the following differential diagnostic signs: presence of gunshot wound, its intravitality, prescription, direction of projectile (bullet) movement, power of used weapon, etc.

Objective: To study the mechanisms of wound canal formation in gunshot injury, the pattern of damage to the biological tissues of its walls (mainly, blood vessels), the features of hemorrhages forming around it.

View Article and Find Full Text PDF

Prolonging All-Optical Molecular Electron Spin Coherence in the Tissue Transparency Window.

J Am Chem Soc

September 2025

Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States.

Coherent electron spin states within paramagnetic molecules hold significant potential for microscopic quantum sensing. However, all-optical coherence measurements amenable to high spatial and temporal resolution under ambient conditions remain a significant challenge. Here we conduct room-temperature, picosecond time-resolved Faraday ellipticity/rotation (TRFE/R) measurements of the electron spin decoherence time in [IrBr].

View Article and Find Full Text PDF

Importance: Stoma reversal is associated with few complications. However, recent studies show that 1 in 3 patients develop an incisional hernia, for which half of the patients receive surgical correction.

Objective: To investigate whether prophylactic synthetic mesh placement in the retromuscular space during stoma reversal reduces the rate of stomal site incisional hernias.

View Article and Find Full Text PDF