98%
921
2 minutes
20
Because the number of fungal species (mycobionts) exceeds the number of algae and cyanobacteria (photobionts) found in lichens by more than two orders of magnitude, reciprocal one-to-one specificity between one fungal species and one photobiont across their entire distribution is not expected in this symbiotic system, and has not previously been observed. The specificity of the cyanobacterium Nostoc found in lichens was evaluated at a broad geographical scale within one of the main families of lichen-forming fungi (Collemataceae) that associate exclusively with this photobiont. A phylogenetic study was conducted using rbcLXS sequences from Nostoc sampled from 79 thalli (representing 24 species within the Collemataceae), and 163 Nostoc sequences gathered from GenBank. Although most of the lichen-forming fungal species belonging to the Collemataceae exhibited the expected generalist pattern of association with multiple distinct lineages of Nostoc, five independent cases of one-to-one reciprocal specificity at the species level, including two that span intercontinental distributions, were discovered. Each of the five distinct monophyletic Nostoc groups, associated with these five highly specific mycobiont species, represent independent transitions from a generalist state during the evolution of both partners, which might be explained by transitions to asexual fungal reproduction, involving vertical photobiont transmission, and narrowing of ecological niches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ympev.2010.05.013 | DOI Listing |
Appl Microbiol Biotechnol
September 2025
School of Plant Sciences, The University of Arizona, 1140 E South Campus Drive, Forbes 303, Tucson, AZ, 85721, USA.
Fungal endophytes and epiphytes associated with plant leaves can play important ecological roles through the production of specialized metabolites encoded by biosynthetic gene clusters (BGCs). However, their functional capacity, especially in crops like lettuce (Lactuca sativa L.), remains poorly understood.
View Article and Find Full Text PDFArch Microbiol
September 2025
División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Zip Code 36050, Guanajuato, Mexico.
Plasmids are fundamental to molecular biology and biotechnology, playing a crucial role in bacterial evolution. Some plasmids are linked to complex cellular dynamics, including pathogenicity islands, antibiotic resistance, and gene mobilization. This study reports the isolation and sequencing of two cryptic plasmids with different electrophoretic mobilities from the Escherichia coli clinical isolate O55.
View Article and Find Full Text PDFCurr Genet
September 2025
Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, 180001, India.
Trichoderma species exhibit remarkable versatility in adaptability and in occupying habitats with lifestyles ranging from mycoparasitism and saprotrophy to endophytism. In this study, we present the first high-quality whole-genome assembly and annotation of T. lixii using Illumina HiSeq technology to explore the mechanisms of endophytic lifestyle and plant colonization.
View Article and Find Full Text PDFCurr Microbiol
September 2025
Microbiology Laboratory, Department of Life Science, Kyonggi University, Suwon, Gyeonggi-Do, Republic of Korea.
A yellow-pigmented, non-motile, rod-shaped, and Gram-stain-negative bacterium was isolated from the soil of Yeongheung Island, Korea. The novel isolate, strain N803, was strictly aerobic, grew optimally at 30-35 °C, at pH 6.5, and in the presence of 0-2% NaCl.
View Article and Find Full Text PDFTree Physiol
September 2025
Pollen Biotechnology of Crop Plants Group, Margarita Salas Center of Biological Research, CIB-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain.
Somatic embryogenesis (SE) is an in vitro mass propagation system widely employed in plant breeding programs. However, its efficiency in many forest species remains limited due to their recalcitrance. SE relies on the induction of somatic cell reprogramming into embryogenic pathways, a process influenced by transcriptomic changes regulated, among other factors, by epigenetic modifications such as DNA methylation, histone methylation, and histone acetylation.
View Article and Find Full Text PDF