98%
921
2 minutes
20
Chagas disease, caused by the unicellular parasite Trypanosoma cruzi, claims 50,000 lives annually and is the leading cause of infectious myocarditis in the world. As current antichagastic therapies like nifurtimox and benznidazole are highly toxic, ineffective at parasite eradication, and subject to increasing resistance, novel therapeutics are urgently needed. Cruzain, the major cysteine protease of Trypanosoma cruzi, is one attractive drug target. In the current work, molecular dynamics simulations and a sequence alignment of a non-redundant, unbiased set of peptidase C1 family members are used to identify uncharacterized cruzain binding sites. The two sites identified may serve as targets for future pharmacological intervention.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2867933 | PMC |
http://dx.doi.org/10.1371/journal.pntd.0000676 | DOI Listing |
PLoS Negl Trop Dis
May 2010
Biomedical Sciences Program, University of California San Diego, La Jolla, California, United States of America.
Chagas disease, caused by the unicellular parasite Trypanosoma cruzi, claims 50,000 lives annually and is the leading cause of infectious myocarditis in the world. As current antichagastic therapies like nifurtimox and benznidazole are highly toxic, ineffective at parasite eradication, and subject to increasing resistance, novel therapeutics are urgently needed. Cruzain, the major cysteine protease of Trypanosoma cruzi, is one attractive drug target.
View Article and Find Full Text PDFProtein Sci
August 2002
National Centre of Genetic Resources and Biotechnology, Cenargen/Embrapa, S.A.I.N. Parque Rural, Final W5 Norte, 70770-900 Brasília, Brazil.
The recently described inhibitor of cysteine proteinases from Trypanosoma cruzi, chagasin, was found to have close homologs in several eukaryotes, bacteria and archaea, the first protein inhibitors of cysteine proteases in prokaryotes. These previously uncharacterized 110-130 residue-long proteins share a well-conserved sequence motif that corresponds to two adjacent beta-strands and the short loop connecting them. Chagasin-like proteins also have other conserved, mostly aromatic, residues, and share the same predicted secondary structure.
View Article and Find Full Text PDF