Publications by authors named "Benjamin A Wilson"

To detect a direction to evolution, without the pitfalls of reconstructing ancestral states, we need to compare "more evolved" to "less evolved" entities. But because all extant species have the same common ancestor, none are chronologically more evolved than any other. However, different gene families were born at different times, allowing us to compare young protein-coding genes to those that are older and hence have been evolving for longer.

View Article and Find Full Text PDF

The phenomenon of gene birth from junk DNA is surprising, because random polypeptides are expected to be toxic. There are two conflicting views about how gene birth is nevertheless possible: the continuum hypothesis invokes a gradual gene birth process, while the preadaptation hypothesis predicts that young genes will show extreme levels of gene-like traits. We show that intrinsic structural disorder conforms to the predictions of the preadaptation hypothesis and falsifies the continuum hypothesis, with all genes having higher levels than translated junk DNA, but young genes having the highest level of all.

View Article and Find Full Text PDF

Evolutionary rescue occurs when a population that is declining in size because of an environmental change is rescued from extinction by genetic adaptation. Evolutionary rescue is an important phenomenon at the intersection of ecology and population genetics, and the study of evolutionary rescue is critical to understanding processes ranging from species conservation to the evolution of drug and pesticide resistance. While most population-genetic models of evolutionary rescue focus on estimating the probability of rescue, we focus on whether one or more adaptive lineages contribute to evolutionary rescue.

View Article and Find Full Text PDF

Drug resistance is a costly consequence of pathogen evolution and a major concern in public health. In this review, we show how population genetics can be used to study the evolution of drug resistance and also how drug resistance evolution is informative as an evolutionary model system. We highlight five examples from diverse organisms with particular focus on: (i) identifying drug resistance loci in the malaria parasite Plasmodium falciparum using the genomic signatures of selective sweeps, (ii) determining the role of epistasis in drug resistance evolution in influenza, (iii) quantifying the role of standing genetic variation in the evolution of drug resistance in HIV, (iv) using drug resistance mutations to study clonal interference dynamics in tuberculosis and (v) analysing the population structure of the core and accessory genome of Staphylococcus aureus to understand the spread of methicillin resistance.

View Article and Find Full Text PDF

Delineating microbial populations, discovering ecologically relevant phenotypes and identifying migrants, hybrids or admixed individuals have long proved notoriously difficult, thereby limiting our understanding of the evolutionary forces at play during the diversification of microbial species. However, recent advances in sequencing and computational methods have enabled an unbiased approach whereby incipient species and the genetic correlates of speciation can be identified by examining patterns of genomic variation within and between lineages. We present here a population genomic study of a phylogenetic species in the Neurospora discreta species complex, based on the resequencing of full genomes (~37 Mb) for 52 fungal isolates from nine sites in three continents.

View Article and Find Full Text PDF

Adaptation from de novo mutation can produce so-called soft selective sweeps, where adaptive alleles of independent mutational origin sweep through the population at the same time. Population genetic theory predicts that such soft sweeps should be likely if the product of the population size and the mutation rate toward the adaptive allele is sufficiently large, such that multiple adaptive mutations can establish before one has reached fixation; however, it remains unclear how demographic processes affect the probability of observing soft sweeps. Here we extend the theory of soft selective sweeps to realistic demographic scenarios that allow for changes in population size over time.

View Article and Find Full Text PDF

There have been recent surprising reports that whole genes can evolve de novo from noncoding sequences. This would be extraordinary if the noncoding sequences were random with respect to amino acid identity. However, if the noncoding sequences were previously translated at low rates, with the most strongly deleterious cryptic polypeptides purged by selection, then de novo gene origination would be more plausible.

View Article and Find Full Text PDF

Chagas disease, caused by the unicellular parasite Trypanosoma cruzi, claims 50,000 lives annually and is the leading cause of infectious myocarditis in the world. As current antichagastic therapies like nifurtimox and benznidazole are highly toxic, ineffective at parasite eradication, and subject to increasing resistance, novel therapeutics are urgently needed. Cruzain, the major cysteine protease of Trypanosoma cruzi, is one attractive drug target.

View Article and Find Full Text PDF