A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

The evolutionary impact of androgen levels on prostate cancer in a multi-scale mathematical model. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Androgens bind to the androgen receptor (AR) in prostate cells and are essential survival factors for healthy prostate epithelium. Most untreated prostate cancers retain some dependence upon the AR and respond, at least transiently, to androgen ablation therapy. However, the relationship between endogenous androgen levels and cancer etiology is unclear. High levels of androgens have traditionally been viewed as driving abnormal proliferation leading to cancer, but it has also been suggested that low levels of androgen could induce selective pressure for abnormal cells. We formulate a mathematical model of androgen regulated prostate growth to study the effects of abnormal androgen levels on selection for pre-malignant phenotypes in early prostate cancer development.

Results: We find that cell turnover rate increases with decreasing androgen levels, which may increase the rate of mutation and malignant evolution. We model the evolution of a heterogeneous prostate cell population using a continuous state-transition model. Using this model we study selection for AR expression under different androgen levels and find that low androgen environments, caused either by low serum testosterone or by reduced 5alpha-reductase activity, select more strongly for elevated AR expression than do normal environments. High androgen actually slightly reduces selective pressure for AR upregulation. Moreover, our results suggest that an aberrant androgen environment may delay progression to a malignant phenotype, but result in a more dangerous cancer should one arise.

Conclusions: The model represents a useful initial framework for understanding the role of androgens in prostate cancer etiology, and it suggests that low androgen levels can increase selection for phenotypes resistant to hormonal therapy that may also be more aggressive. Moreover, clinical treatment with 5alpha-reductase inhibitors such as finasteride may increase the incidence of therapy resistant cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2885348PMC
http://dx.doi.org/10.1186/1745-6150-5-24DOI Listing

Publication Analysis

Top Keywords

androgen levels
24
androgen
13
prostate cancer
12
levels
8
prostate
8
mathematical model
8
cancer etiology
8
selective pressure
8
levels increase
8
low androgen
8

Similar Publications