Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Current antidepressant treatments are inadequate for many individuals, and when they are effective, they require several weeks of administration before a therapeutic effect can be observed. Improving the treatment of depression is challenging. Recently, the two-pore domain potassium channel TREK-1 has been identified as a new target in depression, and its antagonists might become effective antidepressants. In mice, deletion of the TREK-1 gene results in a depression-resistant phenotype that mimics antidepressant treatments. Here, we validate in mice the antidepressant effects of spadin, a secreted peptide derived from the propeptide generated by the maturation of the neurotensin receptor 3 (NTSR3/Sortilin) and acting through TREK-1 inhibition. NTSR3/Sortilin interacted with the TREK-1 channel, as shown by immunoprecipitation of TREK-1 and NTSR3/Sortilin from COS-7 cells and cortical neurons co-expressing both proteins. TREK-1 and NTSR3/Sortilin were colocalized in mouse cortical neurons. Spadin bound specifically to TREK-1 with an affinity of 10 nM. Electrophysiological studies showed that spadin efficiently blocked the TREK-1 activity in COS-7 cells, cultured hippocampal pyramidal neurons, and CA3 hippocampal neurons in brain slices. Spadin also induced in vivo an increase of the 5-HT neuron firing rate in the Dorsal Raphe Nucleus. In five behavioral tests predicting an antidepressant response, spadin-treated mice showed a resistance to depression as found in TREK-1 deficient mice. More importantly, an intravenous 4-d treatment with spadin not only induced a strong antidepressant effect but also enhanced hippocampal phosphorylation of CREB protein and neurogenesis, considered to be key markers of antidepressant action after chronic treatment with selective serotonin reuptake inhibitors. This work also shows the development of a reliable method for dosing the propeptide in serum of mice by using AlphaScreen technology. These findings point out spadin as a putative antidepressant of new generation with a rapid onset of action. Spadin can be regarded as the first natural antidepressant peptide identified. It corresponds to a new concept to address the treatment of depression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2854129PMC
http://dx.doi.org/10.1371/journal.pbio.1000355DOI Listing

Publication Analysis

Top Keywords

trek-1
10
antidepressant
9
spadin
8
antidepressant treatments
8
treatment depression
8
trek-1 ntsr3/sortilin
8
cos-7 cells
8
cortical neurons
8
spadin induced
8
mice
5

Similar Publications

Clinicians are often forced into the dilemma of whether to battle ocular inflammation or preserve vision imperiled by elevated intraocular pressure (IOP). Anti-inflammatory treatments utilizing glucocorticosteroid regimens may induce glaucoma by chronically elevating IOP via increased trabecular meshwork (TM) resistance to the flow of aqueous humor, but it is not known whether pressure transduction itself is impacted by steroids and how changes in TM mechanosignaling affect conventional outflow resistance and IOP. To address this, we investigated the role of TREK-1 (TWIK-related potassium channel-1), a mechanosensitive K channel, in regulation of outflow facility, transmembrane signaling and dexamethasone (DEX)-induced ocular hypertension (OHT).

View Article and Find Full Text PDF

The TWIK-related K channel (TREK-1), a member of the two-pore domain potassium(K2P) family, is characterized as a "leaky potassium channel" and is integral to the maintenance of the resting membrane potential. As the most abundant cell type in the central nervous system, astrocytes play important roles in the development of epilepsy by regulating the release of glutamate and the function of potassium channels. Previous studies have revealed that TREK-1 is involved in a range of neurological diseases, including epilepsy.

View Article and Find Full Text PDF

Migraine is a dysfunction of neuronal potassium ion channels.

Front Neurol

July 2025

Integrative Multiomics Laboratory, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India.

Migraine is a primary headache disorder characterized by unilateral pain usually with aura, that affects approximately one in six individuals in India. The underlying biomechanical processes of migraine are still poorly understood, and new research is constantly being published. One of the major factors in migraine pathogenesis is the dysfunction of ion channels in the trigeminal nuclei and sensory cortices.

View Article and Find Full Text PDF

Depression is a complex mental disorder, and consequently, the successful treatment of the depressive disorder remains challenging. The available medications often show limitations in terms of both safety and efficacy. In this case, the presence of the prenyl motif in pharmaceutical compounds has resulted in a broad spectrum of biological activities.

View Article and Find Full Text PDF

Potassium channel clustering: mechanisms shaping axonal excitability.

Front Cell Neurosci

July 2025

Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.

The precise clustering of ion channels at axon initial segments (AIS) and nodes of Ranvier is essential for axonal excitability and rapid action potential propagation. Among the axonal ion channels, voltage-gated potassium channels (Kv) and two-pore domain potassium (K2P) leak channels are key regulators of AIS and nodal excitability. Kv7 and Kv1 channels contribute to action potential threshold and repolarization at the AIS, and membrane repolarization in axons has historically been attributed to Kv channels.

View Article and Find Full Text PDF