Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ischemic preconditioning is a phenomenon in which low-level stressful stimuli upregulate endogenous defensive programs, resulting in subsequent resistance to otherwise lethal injuries. We previously observed that signal transduction systems typically associated with neurodegeneration such as caspase activation are requisite events for the expression of tolerance and induction of HSP70. In this work, we sought to determine the extent and duration of oxidative and energetic dysfunction as well as the role of effector kinases on metabolic function in preconditioned cells. Using an in vitro neuronal culture model, we observed a robust increase in Raf and p66(Shc) activation within 1 h of preconditioning. Total ATP content decreased by 25% 3 h after preconditioning but returned to baseline by 24 h. Use of a free radical spin trap or p66(shc) inhibitor increased ATP content whereas a Raf inhibitor had no effect. Phosphorylated p66(shc) rapidly relocalized to the mitochondria and in the absence of activated p66(shc), autophagic processing increased. The constitutively expressed chaperone HSC70 relocalized to autophagosomes. Preconditioned cells experience significant total oxidative stress measured by F(2)-isoprostanes and neuronal stress evaluated by F(4)-neuroprostane measurement. Neuroprostane levels were enhanced in the presence of Shc inhibitors. Finally, we found that inhibiting either p66(shc) or Raf blocked neuroprotection afforded by preconditioning as well as upregulation of HSP70, suggesting both kinases are critical for preconditioning but function in fundamentally different ways. This is the first work to demonstrate the essential role of p66(shc) in mediating requisite mitochondrial and energetic compensation after preconditioning and suggests a mechanism by which protein and organelle damage mediated by ROS can increase HSP70.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2869196PMC
http://dx.doi.org/10.1523/JNEUROSCI.6366-09.2010DOI Listing

Publication Analysis

Top Keywords

essential role
8
preconditioned cells
8
atp content
8
p66shc
7
preconditioning
7
role redox-sensitive
4
redox-sensitive kinase
4
kinase p66shc
4
p66shc determining
4
determining energetic
4

Similar Publications

Background: Anaplastic lymphoma kinase (ALK)-positive primary CNS anaplastic large cell lymphoma (ALCL) is an extremely rare pediatric malignancy. Its radiological appearance often mimics infectious or glial lesions, complicating diagnosis and delaying treatment.

Observations: The authors report the case of a 10-year-old immunocompetent female who presented with absence seizures and vomiting.

View Article and Find Full Text PDF

Background: Breast cancer is a leading cause of cancer-related morbidity and mortality and imposes substantial financial strain on individuals and society. Minoritized groups, particularly Black/African American (AA) women, face a heightened risk of financial toxicity during treatment, even after accounting for socioeconomic differences.

Objective: The aim of this study was to explore and provide meaningful interpretations of the financial experiences of Black/AA breast cancer survivors (BCSs).

View Article and Find Full Text PDF

Distinct prelimbic cortex ensembles encode response execution and inhibition.

Proc Natl Acad Sci U S A

September 2025

Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224.

Learning when to initiate or withhold actions is essential for survival, requiring the integration of past experiences with new information to adapt to changing environments. The prelimbic cortex (PL) plays a central role in this process, with a stable PL neuronal population (ensemble) recruited during operant reward learning to encode response execution. However, it is unknown how this established reward-learning ensemble adapts to changing reward contingencies, such as reward omission during extinction.

View Article and Find Full Text PDF

Ovulation is an intricate process that is essential for reproductive success. In , ovulation increases after mating. This increase is initiated by the male seminal fluid protein ovulin and is executed by female pathways, including octopamine (OA) neuronal signaling.

View Article and Find Full Text PDF

Antarctic krill () is the central prey species in the Southern Ocean food web, supporting the largest and fastest-growing fishery in the region, managed by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR). Climate change is threatening krill populations and their predators, while current catch limits do not take into account climate variability or krill population dynamics. In 2024, CCAMLR was unable to renew its spatial catch limits, highlighting the urgent need for improved management of the krill fishery to prevent any harm to the Southern Ocean ecosystem.

View Article and Find Full Text PDF