Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The O(2) reduction site of cytochrome c oxidase (CcO), comprising iron (Fe(a3)) and copper (Cu(B)) ions, is probed by x-ray structural analyses of CO, NO, and CN(-) derivatives to investigate the mechanism of the complete reduction of O(2). Formation of the derivative contributes to the trigonal planar coordination of and displaces one of its three coordinated imidazole groups while a water molecule becomes hydrogen bonded to both the CN(-) ligand and the hydroxyl group of Tyr244. When O(2) is bound to Fe2+a3 , it is negatively polarized (O2- ), and expected to induce the same structural change induced by CN(-). This structural change allows to receive three electron equivalents nonsequentially from Cu1B+, Fe3+a3, and Tyr-OH, providing complete reduction of O(2) with minimization of production of active oxygen species. The proton-pumping pathway of bovine CcO comprises a hydrogen-bond network and a water channel which extend to the positive and negative side surfaces, respectively. Protons transferred through the water channel are pumped through the hydrogen-bond network electrostatically with positive charge created at the Fe(a) center by electron donation to the O(2) reduction site. Binding of CO or NO to induces significant narrowing of a section of the water channel near the hydrogen-bond network junction, which prevents access of water molecules to the network. In a similar manner, O(2) binding to is expected to prevent access of water molecules to the hydrogen-bond network. This blocks proton back-leak from the network and provides an efficient gate for proton-pumping.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2867921PMC
http://dx.doi.org/10.1073/pnas.0910410107DOI Listing

Publication Analysis

Top Keywords

hydrogen-bond network
16
water channel
12
cytochrome oxidase
8
reduction minimization
8
reduction site
8
complete reduction
8
structural change
8
access water
8
water molecules
8
water
6

Similar Publications

Sulfone bonding is an emerging dipole-dipole interaction between sulfone groups. Herein, sulfone bonding is used for the first time for engineering tough hydrogels. Sulfone-bond-toughened hydrogels are prepared by copolymerizing acrylamide with a sulfone-functionalized monomer.

View Article and Find Full Text PDF

d-Amino acid oxidase from (DAAO) is valuable for pharmaceutical and chemical synthesis due to its high enantioselectivity, but its poor thermostability limits extensive application. This study proposed a synergistic strategy of "sequence consensus design coupled with structure modification" to enhance DAAO thermostability. Through homologous sequence analysis and greedy algorithm-based optimization, a triple mutant M3 (S18T/V7I/Y132F) was obtained, showing a 3.

View Article and Find Full Text PDF

Slide-Ring Based Hydrogel Sensors with Extreme Wide Temperature Adaptability Toward Winter Swimming Sensing Application.

Small

September 2025

Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.

Conductive hydrogels have significant application prospects in the field of flexible wearable sensors. However, there are still challenges to stably apply conductive hydrogels in extreme environments and various aqueous conditions. To enable the application of conductive hydrogels across a wide temperature range and in multiple environments, it is necessary to consider comprehensive properties such as anti-swelling ability, flexibility, self-adhesiveness, stable linear sensing, and certain durability.

View Article and Find Full Text PDF

The influence of different antioxidants on the properties of diacylglycerol based oleogels.

Food Res Int

November 2025

Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University,

Recently, the regulatory effect of natural antioxidants on oleogels has attracted the attention of scholars. Whether natural antioxidants with different structures can co-gel with gelators remains unclear. In this study, the impact of water-soluble (dihydroquercetin and epicatechin) and fat-soluble (lycopene and L-ascorbate palmitate) antioxidants on the physicochemical properties of diacylglycerol oleogels was investigated.

View Article and Find Full Text PDF

The interactions between ethylcellulose (EC) and waxes in multicomponent oleogel systems are underexplored. This study investigated the structural, functional, and physiochemical properties of rice bran oil (RBO) oleogels structured with various ratios of EC and a binary wax blend (9:1 beeswax (BW): carnauba wax (CRW)), varied in 0.5 % w/w increments at a constant total gelator concentration of 4 % w/w.

View Article and Find Full Text PDF