Rapid sampling of molecules via skin for diagnostic and forensic applications.

Pharm Res

Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA.

Published: July 2010


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Skin provides an excellent portal for diagnostic monitoring of a variety of entities; however, there is a dearth of reliable methods for patient-friendly sampling of skin constituents. This study describes the use of low-frequency ultrasound as a one-step methodology for rapid sampling of molecules from the skin.

Methods: Sampling was performed using a brief exposure of 20 kHz ultrasound to skin in the presence of a sampling fluid. In vitro sampling from porcine skin was performed to assess the effectiveness of the method and its ability to sample drugs and endogenous epidermal biomolecules from the skin. Dermal presence of an antifungal drug-fluconazole and an abused substance, cocaine-was assessed in rats.

Results: Ultrasonic sampling captured the native profile of various naturally occurring moisturizing factors in skin. A high sampling efficiency (79 +/- 13%) of topically delivered drug was achieved. Ultrasound consistently sampled greater amounts of drug from the skin compared to tape stripping. Ultrasonic sampling also detected sustained presence of cocaine in rat skin for up to 7 days as compared to its rapid disappearance from the urine.

Conclusions: Ultrasonic sampling provides significant advantages including enhanced sampling from deeper layers of skin and high temporal sampling sensitivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2883922PMC
http://dx.doi.org/10.1007/s11095-010-0081-2DOI Listing

Publication Analysis

Top Keywords

ultrasonic sampling
12
sampling
11
skin
10
rapid sampling
8
sampling molecules
8
skin high
8
molecules skin
4
skin diagnostic
4
diagnostic forensic
4
forensic applications
4

Similar Publications

Understanding seismic attenuation in carbonate rocks is critical for improving reservoir characterization and fluid monitoring during hydrocarbon exploration. This study investigated the behavior of P-wave attenuation (1/ ) during fluid substitution from saltwater to oil in coquina samples from the Morro do Chaves Formation, an analogue of Brazilian pre-salt reservoirs. Laboratory experiments were conducted at an ultrasonic frequency (1.

View Article and Find Full Text PDF

Development of carbon black-percolated GaInSn liquid metal networks for high-sensitive electrochemical detection of diuron in environmental samples.

Food Chem

September 2025

Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan, ROC; Department of General Dentistry, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, ROC. Electronic address:

Diuron (DU), a widely used herbicide, is persistent and toxic, posing serious environmental and health risks. Therefore, the development of advanced sensor materials for the sensitive detection of DU is urgently needed. Here, we present a simple, cost-effective ultrasonic-assisted method to fabricate a high-performance nanocomposite of carbon black (CB) and Ga-liquid metal (GaInSn), which is utilized to modify a carbon electrode (CB/GaInSn/SPCE) for developing an electrochemical sensor for DU detection.

View Article and Find Full Text PDF

Ultrasonication (US) pretreatment (10 and 20 min) before octenyl succinic anhydride (OSA, 3 %) esterification significantly increased the degree of substitution (DS) in proso millet starch, increasing it from 0.0078 to 0.0115.

View Article and Find Full Text PDF

An ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was established to determine -(1,3-dimethylbutyl)--phenyl--phenylenediamine-quinone (6PPD-Q) in human urine and dust in order to understand the internal and external exposure levels in humans. The sample preparation conditions were systematically investigated and the chromatographic conditions and MS parameters were optimized. Briefly, internal standard C-6PPD-Q (0.

View Article and Find Full Text PDF

This study investigates the sensitivity of ultrasonic phase velocity and attenuation statistics to grain size distribution types, specifically monomodal and bimodal, in cubic finite-sized polycrystals with identical overall arithmetic or volumetric grain size statistics. A large ensemble of synthetic polycrystalline microstructures was generated, and their ultrasonic responses were computed using a modified spectral function method. The latter enables estimation of both effective phase velocities and attenuation coefficients while rigorously accounting for finite specimen dimensions and statistical variabilities across different samples.

View Article and Find Full Text PDF