Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Work from our laboratory and others has demonstrated that activation of the nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARgamma) inhibits transformed growth of non-small cell lung cancer (NSCLC) cell lines in vitro and in vivo. We have demonstrated that activation of PPARgamma promotes epithelial differentiation of NSCLC by increasing expression of E-cadherin, as well as inhibiting expression of COX-2 and nuclear factor-kappaB. The Snail family of transcription factors, which includes Snail (Snail1), Slug (Snail2), and ZEB1, is an important regulator of epithelial-mesenchymal transition, as well as cell survival. The goal of this study was to determine whether the biological responses to rosiglitazone, a member of the thiazolidinedione family of PPARgamma activators, are mediated through the regulation of Snail family members. Our results indicate that, in two independent NSCLC cell lines, rosiglitazone specifically decreased expression of Snail, with no significant effect on either Slug or ZEB1. Suppression of Snail using short hairpin RNA silencing mimicked the effects of PPARgamma activation, in inhibiting anchorage-independent growth, promoting acinar formation in three-dimensional culture, and inhibiting invasiveness. This was associated with the increased expression of E-cadherin and decreased expression of COX-2 and matrix metaloproteinases. Conversely, overexpression of Snail blocked the biological responses to rosiglitazone, increasing anchorage-independent growth, invasiveness, and promoting epithelial-mesenchymal transition. The suppression of Snail expression by rosiglitazone seemed to be independent of GSK-3 signaling but was rather mediated through suppression of extracellular signal-regulated kinase activity. These findings suggest that selective regulation of Snail may be critical in mediating the antitumorigenic effects of PPARgamma activators.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2838440PMC
http://dx.doi.org/10.1593/neo.91638DOI Listing

Publication Analysis

Top Keywords

suppression snail
12
snail
9
peroxisome proliferator-activated
8
proliferator-activated receptor-gamma
8
inhibits transformed
8
transformed growth
8
growth non-small
8
non-small cell
8
cell lung
8
lung cancer
8

Similar Publications

Long non-coding RNA MALAT1 regulates epithelial-mesenchymal transition (EMT) and metastasis in epithelial ovarian cancer (EOC) through a competing endogenous RNA (ceRNA) mechanism involving miRNA modulation. This study aimed to elucidate the molecular pathway by which MALAT1 influences EMT and metastatic behavior via interaction with miR-200c-3p and SNAI2. MALAT1 expression was genetically manipulated in the EOC cell line SK-OV-3 by either overexpression or knockdown.

View Article and Find Full Text PDF

Background: The most common endocrine cancer, thyroid carcinoma (TC), has a dismal prognosis when it reaches an advanced stage. Integrin α-2 () has been implicated in cancer progression, influencing both DNA damage and repair mechanisms. However, it is unknown how ITGA2 influences these processes in TC.

View Article and Find Full Text PDF

The progression of renal fibrosis is difficult to reverse, and Poria cocos, one of the main components of Wenyang Zhenshuai Granules, has been shown to be crucial to the development of the epithelial-mesenchymal transition (EMT). This study aimed to examine the molecular mechanism by which Poricoic Acid A (PAA) inhibited the advancement of EMT in renal tubular epithelial (RTE) cells. The protein levels of sprouty RTK signaling antagonist 2 (SPRY2) extracellular regulated protein kinases (ERK), and p-ERK were measured.

View Article and Find Full Text PDF

Targeting TRPV6/CXCR4 complexes prevents castration-resistant prostate cancer metastasis to the bone.

Signal Transduct Target Ther

September 2025

Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer. Department of Biology, Faculty of Science and Technologies, University of Lille, Villeneuve d'Ascq, France. vyacheslav.lehenkyi@uni

Bone metastasis most commonly occurs in castration-resistant prostate cancer (CRPC). The TRPV6 calcium channel is absent in healthy prostate tissue, but its expression increases considerably during cancer progression. We hypothesized that cancer cells induce TRPV6 expression de novo to directly benefit from tightly regulated calcium intake via TRPV6 while providing cancer cells with a selective advantage for metastasis in the calcium-abundant niche, such as bone.

View Article and Find Full Text PDF

Osteosarcoma (OS) is an aggressive malignancy characterised by high metastatic potential and poor prognosis. Imipramine, a tricyclic antidepressant, has shown potential anticancer effects. This study evaluates the cytotoxic, pro-apoptotic and anti-invasion effects of imipramine on OS cells in vitro and in vivo, as well as its underlying mechanisms.

View Article and Find Full Text PDF