[Study on the main influencing factors of mixed-pixel spectral characteristics].

Guang Pu Xue Yu Guang Pu Fen Xi

College of Urban and Environmental Sciences, Northeast Normal University, Changchun 130024, China.

Published: December 2009


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hyperspectral remote sensing can improve the identification and classification of surface features through the spectrum comparing and matching to achieve classification and recognition. Because of the spatial resolution of the sensor as well as the difference in complexity and diversity on the ground, mixed pixels in the image are prevalent in remote sensing. The problem of subpixel unmixing is a prominent issue in the quantitative application of remote sensing. How to effectively interpret the mixed-pixel is one of the key issues in the application of remote sensing. In the present paper, the hyperspectral reflectance characteristics of the mixed-pixels formed with two kinds of materials whose area ratios have always been 1 : 1 were studied at different incident zenith angles and different topology location distribution, which provides a theoretical basis for the mixed pixel classification accuracy improvement.

Download full-text PDF

Source

Publication Analysis

Top Keywords

remote sensing
16
application remote
8
[study main
4
main influencing
4
influencing factors
4
factors mixed-pixel
4
mixed-pixel spectral
4
spectral characteristics]
4
characteristics] hyperspectral
4
remote
4

Similar Publications

A flexible linear circular bipolarization conversion metasurface based on graphene.

Phys Chem Chem Phys

September 2025

School of Electrical and Automation Engineering, Suzhou University of Technology, Suzhou, 215506, China.

A flexible bipolarization conversion metasurface based on graphene is proposed in this paper, which can achieve single-band linear-to-linear (LTL) and dual-band linear-to-circular (LTC) polarization conversion. The polarization conversion ratio (PCR) and axial ratio (AR) are dynamically regulated by varying the sheet resistance () of graphene. When = 1400 Ω Sq, the designed metasurface achieves a single-band LTL polarization conversion of 7.

View Article and Find Full Text PDF

Arthroplasty surgery is a common and successful end-stage intervention for advanced osteoarthritis. Yet, postoperative outcomes vary significantly among patients, leading to a plethora of measures and associated measurement approaches to monitor patient outcomes. Traditional approaches rely heavily on patient-reported outcome measures (PROMs), which are widely used, but often lack sensitivity to detect function changes (e.

View Article and Find Full Text PDF

Effective reduction of oceanic plastic pollution requires scalable and objective monitoring methods that go beyond traditional human-based surveys. This review synthesizes recent advances in remote sensing and AI-driven image analysis for detecting macro-plastic litter. Peer-reviewed studies published up to 2024 were systematically selected from the Scopus database, focusing on applications of remote sensing platforms including webcams, drones, balloons, aircraft, and satellites for monitoring plastic litter in coastal, riverine, and other aquatic environments.

View Article and Find Full Text PDF

Pollination is essential for maintaining biodiversity and ensuring food security, and in Europe it is primarily mediated by four insect orders (Coleoptera, Diptera, Hymenoptera, Lepidoptera). However, traditional monitoring methods are costly and time consuming. Although recent automation efforts have focused on butterflies and bees, flies, a diverse and ecologically important group of pollinators, have received comparatively little attention, likely due to the challenges posed by their subtle morphological differences.

View Article and Find Full Text PDF

Shocked quartz grains are an accepted indicator of crater-forming cosmic impact events, which also typically produce amorphous silica along the fractures. Furthermore, previous research has shown that shocked quartz can form when nuclear detonations, asteroids, and comets produce near-surface or "touch-down" airbursts. When cosmic airbursts detonate with enough energy and at sufficiently low altitude, the resultant relatively small, high-velocity fragments may strike Earth's surface with high enough pressures to generate thermal and mechanical shock that can fracture quartz grains and introduce molten silica into the fractures.

View Article and Find Full Text PDF