98%
921
2 minutes
20
Computational models may have the ability to quantify the relationship between hip morphology, cartilage mechanics and osteoarthritis. Most models have assumed the hip joint to be a perfect ball and socket joint and have neglected deformation at the bone-cartilage interface. The objective of this study was to analyze finite element (FE) models of hip cartilage mechanics with varying degrees of simplified geometry and a model with a rigid bone material assumption to elucidate the effects on predictions of cartilage stress. A previously validated subject-specific FE model of a cadaveric hip joint was used as the basis for the models. Geometry for the bone-cartilage interface was either: (1) subject-specific (i.e. irregular), (2) spherical, or (3) a rotational conchoid. Cartilage was assigned either a varying (irregular) or constant thickness (smoothed). Loading conditions simulated walking, stair-climbing and descending stairs. FE predictions of contact stress for the simplified models were compared with predictions from the subject-specific model. Both spheres and conchoids provided a good approximation of native hip joint geometry (average fitting error approximately 0.5mm). However, models with spherical/conchoid bone geometry and smoothed articulating cartilage surfaces grossly underestimated peak and average contact pressures (50% and 25% lower, respectively) and overestimated contact area when compared to the subject-specific FE model. Models incorporating subject-specific bone geometry with smoothed articulating cartilage also underestimated pressures and predicted evenly distributed patterns of contact. The model with rigid bones predicted much higher pressures than the subject-specific model with deformable bones. The results demonstrate that simplifications to the geometry of the bone-cartilage interface, cartilage surface and bone material properties can have a dramatic effect on the predicted magnitude and distribution of cartilage contact pressures in the hip joint.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857573 | PMC |
http://dx.doi.org/10.1016/j.jbiomech.2010.01.010 | DOI Listing |
Arch Orthop Trauma Surg
September 2025
Adult Reconstruction and Joint Replacement Service, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA.
Background: Differentiating periprosthetic joint infections (PJI) from aseptic failure is challenging in total joint arthroplasty. To date, there is no consensus about the most accurate criteria to diagnose PJI. The current study compares common diagnostic PJI criteria.
View Article and Find Full Text PDFJ Am Acad Orthop Surg Glob Res Rev
September 2025
From the American Hip Institute Research Foundation (Dr. Quesada-Jimenez, Dr. Kahana-Rojkind, and Dr. Domb), and the American Hip Institute, Chicago, IL (Dr. Domb).
Hip pain after a total hip arthroplasty is a prevalent condition. Once aseptic loosening and infection have been ruled out, the possible entities are vast. Accurate diagnosis in this patient population is challenging because they might present in different stages of their recovery process and the potential overlap of some conditions.
View Article and Find Full Text PDFKnee Surg Sports Traumatol Arthrosc
September 2025
Institute of Movement Sciences, Sainte-Marguerite Hospital, Aix-Marseille University, Marseille, France.
Purpose: This study aimed to evaluate the functional and radiological outcomes, complications and procedure survival in patients with posttraumatic tibial plateau deformities treated with unicondylar intra-articular tibial plateau osteotomy (UIATPO), comparing medial and lateral approaches.
Methods: A retrospective study was conducted on all patients with posttraumatic intra-articular tibial plateau deformities who underwent surgical correction at a single centre between 2016 and 2022, with a minimum follow-up of 24 months. Patient characteristics, radiological correction, patient-reported outcome measures (PROMs), including the Lysholm and knee injury and osteoarthritis outcome score (KOOS), and complications were recorded.
Knee Surg Sports Traumatol Arthrosc
September 2025
Orthopaedics Surgery and Sports Medicine Department, FIFA Medical Center of Excellence, Croix-Rousse Hospital, Hospices Civils de Lyon, Lyon North University Hospital, Lyon, France.
Purpose: Robotic-assisted lateral unicompartmental knee arthroplasty (UKA) remains technically demanding due to the complex biomechanics of the lateral compartment. Image-based (IBRA) and imageless (ILRA) robotic systems have both demonstrated superior accuracy compared to conventional mechanical instrumentation, but have not yet been directly compared in lateral UKA. This study aimed to evaluate their respective accuracy and surgical efficiency.
View Article and Find Full Text PDFKnee Surg Sports Traumatol Arthrosc
September 2025
University Clinic for Orthopedic Surgery and Traumatology, Kantonsspital Baselland, Bruderholz, Switzerland.
Kinematic alignment is increasingly adopted in total knee arthroplasty (TKA) as a patient-specific strategy to restore native joint anatomy. However, its reliance on static radiographic measurements may not adequately reflect real-world functional biomechanics. This editorial underscores the importance of complementing static assessment with kinetic principles.
View Article and Find Full Text PDF