98%
921
2 minutes
20
The type 4 melanocortin receptor MC4R, a key relay in leptin signaling, links central energy control to peripheral reserve status. MC4R activation in different brain areas reduces food intake and increases energy expenditure. Mice lacking Mc4r are obese. Mc4r is expressed by hypothalamic paraventricular Thyrotropin-releasing hormone (TRH) neurons and increases energy usage through activation of Trh and production of the thyroid hormone tri-iodothyronine (T(3)). These facts led us to test the hypothesis that energy homeostasis should require negative feedback by T(3) on Mc4r expression. Quantitative PCR and in situ hybridization showed hyperthyroidism reduces Mc4r mRNA levels in the paraventricular nucleus. Comparative in silico analysis of Mc4r regulatory regions revealed two evolutionarily conserved potential negative thyroid hormone-response elements (nTREs). In vivo ChIP assays on mouse hypothalamus demonstrated association of thyroid hormone receptors (TRs) with a region spanning one nTRE. Further, in vivo gene reporter assays revealed dose-dependent T(3) repression of transcription from the Mc4r promoter in mouse hypothalamus, in parallel with T(3)-dependent Trh repression. Mutagenesis of the nTREs in the Mc4r promoter demonstrated direct regulation by T(3), consolidating the ChIP results. In vivo shRNA knockdown, TR over-expression approaches and use of mutant mice lacking specific TRs showed that both TRalpha and TRbeta contribute to Mc4r regulation. T(3) repression of Mc4r transcription ensures that the energy-saving effects of T(3) feedback on Trh are not overridden by MC4R activation of Trh. Thus parallel repression by T(3) on hypothalamic Mc4r and Trh contributes to energy homeostasis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2840120 | PMC |
http://dx.doi.org/10.1073/pnas.0905190107 | DOI Listing |
Cell Genom
September 2025
Department of Genetics, Stanford University, Stanford, CA, USA. Electronic address:
Non-olfactory G-protein-coupled receptors (GPCRs) regulate vital physiological functions and are targets for ∼34% of US Food and Drug Administration (FDA)-approved drugs. While small-molecule-activated GPCRs are well studied, there is growing interest in peptide GPCRs, particularly the melanocortin-4 receptor (MC4R), a key regulator of energy balance and appetite. Activation of MC4R by β-melanocyte-stimulating hormone (β-MSH) reduces food intake, and pathway dysfunction leads to obesity.
View Article and Find Full Text PDFMethods
September 2025
Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Physical Biology, Universitätsstr. 1, 40225 Düsseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany; Jülich Ce
Many membrane proteins, including G protein-coupled receptors (GPCRs), are susceptible to denaturation when extracted from their native membrane by detergents. Therefore, alternative methods have been developed, including amphiphilic copolymers that enable the direct extraction of functional membrane proteins along with their surrounding lipids. Among these amphiphilic copolymers, styrene/maleic acid (SMA) and diisobutylene/maleic acid (DIBMA) polymers have been extensively studied.
View Article and Find Full Text PDFRes Sq
August 2025
Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center (PBRC), LSU system, Baton Rouge, LA, USA.
The preoptic area (POA) is a well-established regulator of body temperature, but its role in feeding behavior remains underexplored. Our study identifies leptin receptor (Lepr)-expressing neurons in the POA (POA) as critical component to suppress food intake (FI) and increase satiety in response to warm ambient temperatures. Utilizing chemogenetic activation in mice of both sexes, we demonstrate that selective activation of POA neurons mimics the effects of warm temperatures, leading to a significant reduction in FI.
View Article and Find Full Text PDFJ Eat Disord
August 2025
Psychiatry Unit, Outpatient Unit for Clinical Research and Treatment of Eating Disorders, University Hospital Renato Dulbecco, Catanzaro, Italy.
Background: Food addiction (FA) has gained more scientific attention but needs deeper understanding. Data indicates that the central melanocortin (MC) system through the MC4 receptor (MC4R) and its polymorphisms play a crucial role in the regulation of eating behaviour and in the motivation for the rewarding properties of food potentially leading to obesity. This may also contribute to the emergence of altered reward-related behaviors such as FA.
View Article and Find Full Text PDF