Expression of two novel transcripts in the mouse definitive endoderm.

Gene Expr Patterns

Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada.

Published: July 2010


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Here we describe the expression of two novel transcripts, Ende (AK014119) and Npe (AK084355), during early mouse embryogenesis. Ende mRNA was first detected at embryonic day (E) 7.0 in a small population of epiblast cells in the distal half of the embryo. At E7.5, Ende was expressed by newly formed definitive endoderm cells in the proximal half of the embryo, and was not expressed in extra-embryonic endoderm. This expression pattern then changed to the ventral aspect of the developing foregut pocket and the entire hindgut pocket at E8.0-8.5, before becoming restricted to the foregut overlying the heart and the posterior-most hindgut. By E9.25 Ende expression was also observed in the posterior half of the ventral neural tube. Thus, Ende was expressed dynamically and in specific populations of the definitive endoderm from E7.0 to E8.5. We found Npe expression to be restricted to the node/posterior notochord region at the distal tip of the embryo between E7.0 and E8.0. By E9.5, Npe expression was observed in the posterior-most population of dorsal hindgut cells and notochord cells. Given their expression in mouse definitive endoderm populations, Ende and Npe will be valuable tools to study formation and development of this tissue.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4850063PMC
http://dx.doi.org/10.1016/j.gep.2010.02.001DOI Listing

Publication Analysis

Top Keywords

definitive endoderm
16
expression novel
8
novel transcripts
8
mouse definitive
8
half embryo
8
ende expressed
8
expression observed
8
npe expression
8
expression
7
ende
6

Similar Publications

Digital reconstruction of full embryos during early mouse organogenesis.

Cell

August 2025

Department of Cardiac Surgery, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Key Laboratory of Developmental Genes and Human Disease, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, School of Life Science and

Early organogenesis is a crucial stage in embryonic development, characterized by extensive cell fate specification to initiate organ formation but also by a high susceptibility to developmental defects. Here, we profiled 285 serial sections from six E7.5-E8.

View Article and Find Full Text PDF

TBX3 advances the developmental chromatin landscape toward the hepatic fate.

Dev Cell

June 2025

Terry Fox Laboratory, BC Cancer Research Institute, Vancouver, BC V5Z1L3, Canada; Cell and Developmental Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T1Z4, Canada; School of

By mapping histone modifications in a human stem cell model of hepatic differentiation, we identified an enhancer landscape that is dynamic and stage specific, with many primed at the definitive endoderm stage. While hepatic enhancers gained active histone modifications, non-hepatic enhancers lost H3K4me1 after hepatic specification. T-box transcription factor 3 (TBX3) was found to bind to hepatic enhancers and promoters.

View Article and Find Full Text PDF

During gastrulation, dynamic interplay among cell signaling pathways dictates cell fate decisions. While extensive studies have elucidated their critical roles in morphological regulation, how these signals orchestrate the epigenome to confer developmental competence remains unclear. In this study, we demonstrate that H3K9me3-marked facultative heterochromatin domains undergo global reorganization during differentiation of human pluripotent stem cells into mesoderm and endoderm, which arise through epithelial-mesenchymal transition (EMT), but not into ectoderm, which retains epithelial state.

View Article and Find Full Text PDF

Morphology of the larval midgut of the longhorn beetle Rhytidodera bowringii White, 1853 (Coleoptera: Cerambycidae: Cerambycinae).

Protoplasma

September 2025

Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China.

The midgut of insects originates from the endoderm. It is located in the central part of the digestive tract and serves as the primary site for chemical digestion and nutrient absorption. The larvae of Cerambycidae are the most destructive life stage.

View Article and Find Full Text PDF

Embryonic development follows a conserved sequence of events across species, yet the pace of development is highly variable and particularly slow in humans. Species-specific developmental timing is largely recapitulated in stem cell models, suggesting a cell-intrinsic clock. Here we use directed differentiation of human embryonic stem cells into neuroectoderm to perform a whole-genome CRISPR-Cas9 knockout screen and show that the epigenetic factors Menin and SUZ12 modulate the speed of PAX6 expression during neural differentiation.

View Article and Find Full Text PDF