Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We demonstrate a new approach for internal mass calibration on an electron transfer dissociation-enabled linear ion trap-orbitrap hybrid mass spectrometer. Fluoranthene cations, a byproduct of the reaction used for generation of electron transfer dissociation reagent anions, are co-injected with the analyte cations in all orbitrap mass analysis events. The fluoranthene cations serve as a robust internal calibrant with minimal impact on scan time (<20 ms) or spectral quality. Following external mass calibration, 60 replicate LC-MS/MS runs of a complex peptide mixture were collected over the course of approximately 136 h (almost 6 days). Using only standard external mass calibration, the mass accuracy for a typical analysis was -3.31 +/- 0.93 ppm (sigma) for precursors and -2.32 +/- 0.89 ppm for products. After application of internal recalibration, mass accuracy improved to +0.77 +/- 0.71 ppm for precursors and +0.17 +/- 0.67 ppm for products. When all 60 replicate runs were analyzed together without internal mass recalibration, the mass accuracy was -1.23 +/- 1.54 ppm for precursors and -0.18 +/- 1.42 ppm for products, nearly a 2-fold drop in precision relative to an individual run. After internal mass recalibration, this improved to +0.80 +/- 0.70 ppm for precursors and +0.16 +/- 0.67 ppm for products, roughly equivalent to that obtained in a single run, demonstrating a near complete elimination of mass calibration drift.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2871411PMC
http://dx.doi.org/10.1074/mcp.M900541-MCP200DOI Listing

Publication Analysis

Top Keywords

electron transfer
12
transfer dissociation-enabled
8
orbitrap mass
8
mass spectrometer
8
fluoranthene cations
8
mass
5
sub-part-per-million precursor
4
precursor product
4
product mass
4
mass accuracy
4

Similar Publications

Molecular Plasmonic Cavities.

Nano Lett

September 2025

Department of Physics, Columbia University, New York, New York 10027, United States.

Graphene-based photonic structures have emerged as fertile ground for the controlled manipulation of surface plasmon polaritons (SPPs), providing a two-dimensional platform with low optoelectronic losses. In principle, nanostructuring graphene can enable further confinement of nanolight─enhancing light-matter interactions in the form of SPP cavity modes. In this study, we engineer nanoscale plasmonic cavities composed of self-assembled C arrays on graphene.

View Article and Find Full Text PDF

Type-I Supramolecular Photosensitizer Enables GSH Depletion by Hydrogen Atom Transfer.

J Am Chem Soc

September 2025

Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.

Photodynamic therapy (PDT) induces oxidative stress that triggers a compensatory upregulation of intracellular glutathione (GSH), thereby diminishing PDT efficacy. The simultaneous generation of reactive oxygen species and depletion of GSH holds promise for amplifying oxidative damage and enhancing therapeutic outcomes yet remains a challenge. In this work, we present a Type-I supramolecular photosensitizer designed to deplete GSH through a hydrogen atom transfer mechanism while concurrently generating superoxide radicals.

View Article and Find Full Text PDF

Recent Advances in P450 Enzyme Engineering for the Production of Natural Products.

Chembiochem

September 2025

Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.

Natural products exhibit a wide range of biological activities and are the crucial resources for drug development and compound modification. Cytochrome P450 enzymes (P450s, CYP) are a class of multifunctional and stereoselective biocatalysts that utilize heme as a cofactor and can be employed in the biosynthesis of natural products. With the development of biotechnology, P450s have been widely applied in the synthesis of natural products.

View Article and Find Full Text PDF

The transition to a net-zero carbon economy hinges on the development of sustainable, efficient, and economically viable energy technologies. Here, we present a green, electricity-free auto-combustion synthesis of a multifunctional FeNi@MnO@C electrocatalyst, demonstrating outstanding performance for OER, HER, OWS, UOR, UOS, and OWS in alkaline seawater with a required potential of 1.45, 0.

View Article and Find Full Text PDF

Phase-Controlled Multi-Element Oxide-Sulfide Heterostructure Toward High-Efficiency Electro-Fenton Oxidation.

Small Methods

September 2025

Department of Materials Science and Engineering, National Cheng Kung University, No. 1 University Road, Tainan, 70101, Taiwan.

Electron Fenton (EF) degradation often suffers from low in situ HO electrosynthesis and Fe regeneration. Herein, a novel multi-element oxide-sulfide heterostructure is reported, (FeVCoCuMn)O/(CuFeVCoMn)S, for efficient and stable EF degradation. The oxide-sulfide phase ratio is optimized through temperature control during the synthesis.

View Article and Find Full Text PDF