98%
921
2 minutes
20
Statistical models of deformations (SMD) capture the variability of deformations from the template image onto a group of sample images and can be used to constrain the traditional deformable registration algorithms to improve their robustness and accuracy. This paper employs a wavelet-PCA-based SMD to constrain the traditional deformable registration based on the Bayesian framework. The template image is adaptively warped by an intermediate deformation field generated based on the SMD during the registration procedure, and the traditional deformable registration is performed to register the intermediate template image with the input subject image. Since the intermediate template image is much more similar to the subject image, and the deformation is relatively small and local, it is less likely to be stuck into undesired local minimum using the same deformable registration in this framework. Experiments show that the proposed statistically-constrained deformable registration framework is more robust and accurate than the conventional registration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2792917 | PMC |
http://dx.doi.org/10.1504/IJMEI.2009.022646 | DOI Listing |
IEEE Trans Med Imaging
September 2025
Computed Tomography (CT) to Cone-Beam Computed Tomography (CBCT) image registration is crucial for image-guided radiotherapy and surgical procedures. However, achieving accurate CT-CBCT registration remains challenging due to various factors such as inconsistent intensities, low contrast resolution and imaging artifacts. In this study, we propose a Context-Aware Semantics-driven Hierarchical Network (referred to as CASHNet), which hierarchically integrates context-aware semantics-encoded features into a coarse-to-fine registration scheme, to explicitly enhance semantic structural perception during progressive alignment.
View Article and Find Full Text PDFRMD Open
September 2025
Department of Rheumatology and Department of Internal Medicine, Ghent University Hospital, Unit for Molecular Immunology and Inflammation, Flemish Institute for Biotechnology, Inflammation Research Center, University of Ghent, Ghent, Belgium.
Objectives: To evaluate whether patients with systemic lupus erythematosus (SLE) have different nailfold videocapillaroscopy (NVC) findings compared with healthy controls (HCs) and whether there is an association between NVC abnormalities and disease activity, clinical and/or laboratory features in SLE.
Methods: This is an observational, multicentre, international, matched case-control study. 381 subjects (203 patients with SLE and 178 HCs) were enrolled from 16 centres in 10 countries.
CNS Neurosci Ther
September 2025
Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
Objectives: Unruptured brain arteriovenous malformations (AVMs) typically do not cause aphasia, even when the traditional language areas are affected by the nidus. We attempted to elucidate its language reorganization mechanism by analyzing the alterations in functional connectivity using functional connectivity (FC) and track-weighted static functional connectivity (TW-sFC) approaches.
Methods: This cross-sectional study prospectively enrolled patients with AVMs involving left-hemisphere language areas and healthy controls.
Eye (Lond)
September 2025
Paediatric Ophthalmology and Strabismus, Moorfields Eye Hospital, London, United Kingdom.
Introduction: The Certifications of Visual Impairment (VI) system was implemented to quantify and classify the incidence of visual impairment amongst the England and Wales population. This retrospective study investigates the trend in the certification of VI amongst children aged <16 years old.
Methods: CVI data provided by the Certifications Office, was extracted and assessed to identify the various causes of mild-moderate (SI) and severe (SSI) visual impairment between 2009-2022.
J Neurosurg
September 2025
1Thayer School of Engineering, Dartmouth College, Hanover.
Objective: In open cranial procedures, intraoperative brain shift can degrade the accuracy of surgical navigation on the basis of preoperative MR (pMR) images as soon as the cortical surface is exposed. The aim of this study was to develop a fully automated image updating system to address brain shift at the start of open cranial surgery and to evaluate its accuracy and efficiency.
Methods: This study included patients undergoing open cranial procedures at a single center.