A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Using wave-packet interferometry to monitor the external vibrational control of electronic excitation transfer. | LitMetric

Using wave-packet interferometry to monitor the external vibrational control of electronic excitation transfer.

J Chem Phys

Department of Chemistry and Oregon Center for Optics, University of Oregon, Eugene, Oregon 97403, USA.

Published: December 2009


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We investigate the control of electronic energy transfer in molecular dimers through the preparation of specific vibrational coherences prior to electronic excitation, and its observation by nonlinear wave-packet interferometry (nl-WPI). Laser-driven coherent nuclear motion can affect the instantaneous resonance between site-excited electronic states and thereby influence short-time electronic excitation transfer (EET). We first illustrate this control mechanism with calculations on a dimer whose constituent monomers undergo harmonic vibrations. We then consider the use of nl-WPI experiments to monitor the nuclear dynamics accompanying EET in general dimer complexes following impulsive vibrational excitation by a subresonant control pulse (or control pulse sequence). In measurements of this kind, two pairs of polarized phase-related femtosecond pulses following the control pulse generate superpositions of coherent nuclear wave packets in optically accessible electronic states. Interference contributions to the time- and frequency-integrated fluorescence signals due to overlaps among the superposed wave packets provide amplitude-level information on the nuclear and electronic dynamics. We derive the basic expression for a control-pulse-dependent nl-WPI signal. The electronic transition moments of the constituent monomers are assumed to have a fixed relative orientation, while the overall orientation of the complex is distributed isotropically. We include the limiting case of coincident arrival by pulses within each phase-related pair in which control-influenced nl-WPI reduces to a fluorescence-detected pump-probe difference experiment. Numerical calculations of pump-probe signals based on these theoretical expressions are presented in the following paper [J. D. Biggs and J. A. Cina, J. Chem. Phys. 131, 224302 (2009)].

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3257596DOI Listing

Publication Analysis

Top Keywords

electronic excitation
12
control pulse
12
wave-packet interferometry
8
electronic
8
control electronic
8
excitation transfer
8
coherent nuclear
8
electronic states
8
constituent monomers
8
wave packets
8

Similar Publications