Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A combination of detailed magnetisation studies and electronic-structure analysis using broken-symmetry DFT is used to explore the electronic structure of a trigonal prismatic Cu(II)(6) cluster. The presence of six paramagnetic metal centres with S = 1/2 gives rise to a maximum multiplicity of S = 3 and a total of 31 broken-symmetry states with M(S) < 3. Computed differences in energy between the high-spin and broken-symmetry states are expressed in terms of the 15 distinct Heisenberg exchange coupling parameters, J(ij), and the equations are solved by a least-squares fitting procedure. By inspection of the errors introduced by progressive symmetrisation of the Hamiltonian to reduce the number of independent J(ij), we arrive at a minimal model containing only four distinct J(ij) (three intra- and one inter-triangular). The computed values then guide the fitting of the magnetisation data. The computed trends in J(ij) can only be reproduced when antisymmetric exchange is included in the model Hamiltonian. The use of this Hamiltonian provides a reasonable description of the magnetic behaviour at all temperatures and fields. If a simpler isotropic model Hamiltonian is used instead, the best fit values of J(ij) are compromised by the need to fit the low-temperature region where antisymmetric exchange dominates the shape of the curve.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b907805cDOI Listing

Publication Analysis

Top Keywords

electronic structure
8
trigonal prismatic
8
prismatic cuii6
8
cuii6 cluster
8
broken-symmetry states
8
antisymmetric exchange
8
model hamiltonian
8
jij
5
structure magnetic
4
magnetic properties
4

Similar Publications

A series of Cu-based single-atom catalysts (SACs) with asymmetric coordination were designed to accelerate lithium-sulfur (Li-S) chemistry. The electronegativity contrast from the dopant induces a localized electronic asymmetry that amplifies Jahn-Teller distortion at the Cu center. This distortion profoundly modulates the Cu 3d electronic structure and its interaction with Li-S intermediates.

View Article and Find Full Text PDF

Cyclin-dependent kinase 20 (CDK20), also known as cell cycle-related kinase (CCRK), plays a pivotal role in hepatocellular carcinoma (HCC) progression by regulating β-catenin signaling and promoting uncontrolled proliferation. Despite its emerging significance, selective small-molecule inhibitors of CDK20 remain unexplored. In this study, a known CDK20 inhibitor, ISM042-2-048, was employed as a reference to retrieve structurally similar compounds from the PubChem database using an 85% similarity threshold.

View Article and Find Full Text PDF

This study develops an integrated X-ray absorption spectroscopy (XAS) photoemission electron microscopy (PEEM) platform on beamline BL09U at the Shanghai Synchrotron Radiation Facility (SSRF), enabling nanoscale characterization of complex materials through energy-resolved imaging and local-area XAS. By using the wide range of energy tunability, full access to different polarizations and PEEM's surface sensitivity, we have established a gap-monochromator control system under the EPICS framework to synchronize the elliptically polarized undulator (EPU) gap and monochromator energy dynamically, optimizing photon flux stability for absorption fine structure analysis. Combining X-ray magnetic circular dichroism (XMCD) and X-ray magnetic linear dichroism (XMLD) with PEEM and local-area XAS, this platform achieves concurrent mapping of electronic structures and magnetic domains in ferromagnetic nano-patterns, as demonstrated through our studies of NiFe Permalloy using this system.

View Article and Find Full Text PDF

Low-Dimensional Semiconducting Silver (Germanium, Tin) Polyphosphides - Incommensurately Modulated Derivates of the HgPbP Structure Type.

Inorg Chem

September 2025

Synthesis and Characterization of Innovative Materials, TUM School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, Garching b. München 85748, Germany.

Semiconductors with one-dimensional (1D) substructures are promising for next-generation optical and electronic devices due to their directional transport and flexibility. Representatives of this class include HgPbP-type materials. This study investigates the related semiconductors AgGeP and AgSnP.

View Article and Find Full Text PDF

Baroreflex activation therapy (BAT) improves functional status, quality of life, and exercise capacity in patients with heart failure with reduced ejection fraction; however, its direct effects on reversing adverse cardiac remodeling as assessed by improvements in cardiac structure, function, and coupling with the arterial system remain unclear. We present 2 cases of patients who initially presented with decompensated heart failure, and despite initial medical therapy and continued outpatient follow-up, were unable to tolerate full escalation of guideline-directed medical therapy. The patients remained symptomatic, with high biomarker levels, poor functional capacity, severe heart failure symptoms, and objectively had decreased stroke volume, low left ventricular ejection fraction, and high left ventricular mass.

View Article and Find Full Text PDF