Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Various factors are thought to be responsible for Candida albicans virulence, such as lipases, proteases and adhesins. Many of these factors are GPI-anchored cell surface proteins responsible for pathogenicity. Hwp2 is a putative GPI-anchored protein. The purpose of this study is to characterize the role of Hwp2 regarding filamentation on various filamentation-inducing and non-inducing solid and liquid media, virulence in a mouse model of disseminated candidiasis, and drug resistance to six widely used antifungal agents, by creating a homozygous null hwp2 strain and comparing it with the parental and a revertant HWP2(+)strain. It was observed that an hwp2Delta strain was highly filamentation-deficient on solid agar media as opposed to most liquid media tested. Furthermore, the mutant strain was slightly reduced in virulence compared to the wild strain since all mice infected with the control strain died after 6 days of injection compared with 11 days for the mutant. These results indicate a possible role for Hwp2 in adhesion and invasiveness. Finally a previously unidentified 37-amino-acid-long, stretch of Hwp2, possibly involved in protein aggregation, was found to align with high sequence identity and exclusively to C. albicans cell wall proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micres.2009.03.006DOI Listing

Publication Analysis

Top Keywords

candida albicans
8
putative gpi-anchored
8
gpi-anchored cell
8
cell wall
8
role hwp2
8
liquid media
8
hwp2
5
strain
5
characterization hwp2
4
hwp2 candida
4

Similar Publications

Arthrospira platensis (Spirulina) is one the highly valuable cyanobacteria in food and pharmaceutical industry. The intracellular and extracellular polysaccharide (PS) extracts of A. platensis have been exhibited different biological functions.

View Article and Find Full Text PDF

Antifungal Prescribing in European Pediatric Intensive Care Units: Results of a multinational 3-month weekly point-prevalence survey.

J Pediatric Infect Dis Soc

September 2025

Infectious Diseases Unit, 3rd Department of Pediatrics, Aristotle University School of Medicine, Hippokration Hospital, Thessaloniki, Greece.

Background: Critically ill pediatric patients admitted to the PICU are highly vulnerable to infections, including invasive fungal diseases and antifungal agents are frequently prescribed. Little is known about antifungal usage in PICUs across Europe.

Methods: A multinational 3-month weekly point-prevalence study for measuring antifungal drug use was organized.

View Article and Find Full Text PDF

Background: Vulvovaginal Candidiasis (VVC) is a condition commonly caused by . It is the second most common infection of the female genitalia affecting many women worldwide. Studies have identified unhealthy genital care practices to be associated with the infection among women including expectant mothers.

View Article and Find Full Text PDF

Background: Candidiasis, predominantly caused by , poses a significant global health challenge, especially in tropical regions. Nystatin is a potent antifungal agent that is hindered by its low solubility and permeability, limiting its clinical efficacy.

Methods: This study aimed to investigate the potential of a layer-by-layer (LBL) coating system, employing chitosan and alginate, to improve the stability, entrapment efficiency (%EE), and antifungal efficacy of nystatin-loaded liposomes against Candida albicans.

View Article and Find Full Text PDF

Diagnostic Challenges of Six-Pathogen Detected by mNGS in an Immunocompromised ICU Patient with Severe Community-Acquired Pneumonia-Induced Sepsis: A Case Report and Literature Review.

Infect Drug Resist

September 2025

Department of Emergency, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, People's Republic of China.

Introduction: Severe community-acquired pneumonia (SCAP) in immunocompromised patients is often caused by rare atypical pathogens, which are difficult to detect using conventional microbiological tests (CMTs) and can progress to sepsis in severe cases. Metagenomic next-generation sequencing (mNGS), an emerging pathogen detection technique, enables rapid identification of mixed infections and provides valuable guidance for clinical treatment decisions. SCAP-induced sepsis caused by a six-pathogen co-infection has not been previously reported, but interpretation remains a challenge.

View Article and Find Full Text PDF