98%
921
2 minutes
20
Models for drugs exhibiting target-mediated drug disposition (TMDD) describe biological processes in which drug-target binding significantly influences both pharmacodynamics (PD) and pharmacokinetics (PK). TMDD models are often over-parameterized and their parameters are difficult to estimate based on available data. Approximations of the general model have been suggested, but even these simpler forms can be over-parameterized when, for example, target and drug-target complex concentrations are not available. This work i) reviews TMDD equations, their approximations and methods to study identifiability of model parameters; ii) reviews the publications that used TMDD equations to describe PK and PD of biologics; and iii) discusses issues of identifiability of the TMDD model parameters related to study design and data analysis. Examples demonstrate that use of the TMDD equations for the population PK and PD modeling is most successful when the target and drug-target complex concentrations are available in addition to the drug concentration data. TMDD parameter estimates can be trusted only when they are identifiable, that is, can be estimated from the available data with sufficient precision. Parameter identifiability analysis should be an integral part of the TMDD system investigation. It also should be used prospectively for optimal study design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1517/17425250902992901 | DOI Listing |
Eur J Mass Spectrom (Chichester)
September 2025
Ryazan State University named for S.A. Yesenin, Ryazan, Russia.
The ion-optical properties of the second stability region () formed by the square wave shape potential with a duty cycle of 50% are studied as applied to the operation of a linear ion trap. The stability diagram is presented in detail, the stability parameters and , which determine the spectrum of ion oscillations, are calculated; the pseudopotential well-depth for this zone is given. The LIT acceptances for sinusoidal and rectangular wave forms are shown for comparison.
View Article and Find Full Text PDFBull Entomol Res
September 2025
Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Xalapa, Veracruz, México.
Insect pupae change morphologically (e.g., pigmentation of eyes, wings, setae and legs) during the intrapuparial period.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
September 2025
Associate Professor, School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh-Punjab 147301, India.
Alcoholic fatty liver disease (AFLD) is a leading cause of chronic liver disease worldwide, contributing to significant morbidity and mortality. Despite its growing prevalence, no FDA-approved pharmacological treatments exist, leaving lifestyle modifications as the primary intervention. AFLD pathogenesis involves a complex interplay of lipid accumulation, oxidative stress, insulin resistance, and inflammation, highlighting the need for innovative therapeutic approaches.
View Article and Find Full Text PDFAdv Ther
September 2025
Teva Branded Pharmaceutical Products R&D LLC, West Chester, PA, USA.
Introduction: Pharmacokinetic differences between long-acting injectable antipsychotic (LAI) formulations, combined with a lack of clinical switch studies, contribute to clinician uncertainty when transitioning between LAIs. This analysis employed a population pharmacokinetic (popPK) modeling approach to characterize dosing conversions and switching strategies from intramuscular paliperidone palmitate once monthly (PP1m) to TV-46000, a long-acting subcutaneous formulation of risperidone, once monthly (q1m), with a secondary analysis of PP1m to TV-46000 every 2 months (q2m).
Methods: For PP1m and TV-46000, concentration-time profiles for paliperidone and TV-46000 total active moiety (TAM; risperidone + paliperidone) were simulated on the basis of published popPK models with virtual populations of 5000 patients.
Fish Physiol Biochem
September 2025
Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, 56, India.
Zebrafish models have been used to research Alzheimer's disease and other neurodegenerative disorders because of their similarities to the human genetic composition and behavior. Researchers have detected iron accumulation in the post-mortem brain sections of neurodegenerative disorder patients. Therefore, the development an animal model to simulate these clinical pathological findings is important.
View Article and Find Full Text PDF