Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

As water demand for agriculture exceeds water availability, cropping systems need to become more efficient in water usage, such as deployment of cultivars that sustain yield under drought conditions. Soybean cultivars differ in how quickly they wilt during water-deficit stress, and this trait may lead to yield improvement during drought. The objective of this study was to determine the genetic mechanism of canopy wilting in soybean using a mapping population of recombinant inbred lines (RILs) derived from a cross between KS4895 and Jackson. Canopy wilting was rated in three environments using a rating scale of 0 (no wilting) to 100 (severe wilting and plant death). Transgressive segregation was observed for the RIL population with the parents expressing intermediate wilting scores. Using multiple-loci analysis, four quantitative trait loci (QTLs) on molecular linkage groups (MLGs) A2, B2, D2, and F were detected (P

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00122-009-1068-4DOI Listing

Publication Analysis

Top Keywords

canopy wilting
12
wilting soybean
8
wilting
6
polygenic inheritance
4
inheritance canopy
4
soybean [glycine
4
[glycine max
4
max merr]
4
merr] water
4
water demand
4

Similar Publications

, a fungal pathogen of canola (), can cause yield losses exceeding 20%. An important route for disease is through infected flowers falling and accumulating on branches, which act as a source of inoculum to infect the stems, resulting in stem rot, wilting, plant collapse, and, ultimately, yield loss. The branching architecture of canola may affect infection by affecting flower accumulation in canopies; however, our understanding of this effect is limited.

View Article and Find Full Text PDF

Characterization and Identification of and Causing Root Necrosis and Wilting of Orange Trees in Chile.

Plants (Basel)

January 2025

Departamento de Fruticultura y Enología, Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile.

Orange trees ( × (L.) Osbeck) are the third-most cultivated citrus fruit species in Chile. In recent years, several trees in three orange orchards of 'Lane late' and 'Fukumoto' cultivars grafted on 'Robidoux' trifoliate orange ( (L.

View Article and Find Full Text PDF

As a result of climate change, global temperatures are increasing, and water scarcity is on the rise. Soybean [ () Merr] is one of the most important crops in the world due to its importance as food and feed. One of the major limiting factors for soybean production is drought, which can cause up to 80% reduction in yield.

View Article and Find Full Text PDF

In soybean (Glycine max ), limiting whole-plant transpiration rate (TR) response to increasing vapor pressure deficit (VPD) has been associated with the 'slow-wilting' phenotype and with water-conservation enabling higher yields under terminal drought. Despite the promise of this trait, it is still unknown whether it has a genetic basis in soybean, a challenge limiting the prospects of breeding climate-resilient varieties. Here, we present the results of a first attempt at a high-throughput phenotyping of TR and stomatal conductance response curves to increasing VPD conducted on a soybean mapping population consisting of 140 recombinant inbred lines (RIL).

View Article and Find Full Text PDF