Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Along with afferent information, centrally generated motor command signals may play a role in joint position sense. Isometric muscle contractions can produce a perception of joint displacement in the same direction as the joint would move if unrestrained. Contradictory findings of perceived joint displacement in the opposite direction have been reported. As this only occurs if muscle spindle discharge in the contracting muscle is initially low, it may reflect increased muscle spindle firing from fusimotor activation, rather than central motor command signals. Methodological differences including the muscle contraction task and use of muscle conditioning could underlie the opposing findings. Hence, we tested perceived joint position during two contraction tasks ('hold force' and 'hold position') at the same joint (wrist) and controlled muscle spindle discharge with thixotropic muscle conditioning. We expected that prior conditioning of the contracting muscle would eliminate any effect of increased fusimotor activation, but not of central motor commands. Muscle conditioning altered perceived wrist position as expected. Further, during muscle contractions, subjects reported wrist positions displaced ~12 degrees in the direction of contraction, despite no change in wrist position. This was similar for 'hold force' and 'hold position' tasks and occurred despite prior conditioning of the agonist muscle. However, conditioning of the antagonist muscle did reduce the effect of voluntary contraction on position sense. The errors in position sense cannot be explained by fusimotor activation. We propose that central signals combine with afferent signals to determine limb position and that multiple sources of information are weighted according to their reliability.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00221-009-1832-3DOI Listing

Publication Analysis

Top Keywords

position sense
16
muscle conditioning
16
muscle
13
muscle spindle
12
fusimotor activation
12
muscle contraction
8
motor commands
8
position
8
motor command
8
command signals
8

Similar Publications

Goal-oriented balance rehabilitation system for balance disorder.

Med Eng Phys

October 2025

Mechatronics Engineering Department, Sakarya University of Applied Sciences, Serdivan, Sakarya, 54600, Sakarya, Turkey; Systems Engineering Department, Military Technological College, Al Matar, Muscat, 111, Muscat, Oman. Electronic address:

Balance is a critical component of daily activities and overall quality of life. This study aims to develop a cost-effective exercise system for the rehabilitation of balance disorders by combining a sensor module with target-oriented video games. The system, designed using a microcontroller-controlled sensor module and Unity game engine, features a game component that provides visual feedback and is synchronized with the platform movements.

View Article and Find Full Text PDF

Neural basis of transcutaneous electrical nerve stimulation for neuropathic pain relief.

Neuron

September 2025

Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China. Electronic address:

Existing treatments for chronic pain often prove ineffective and carry adverse side effects, highlighting the need for better analgesics, including non-pharmacological treatments. We demonstrate that transcutaneous electrical nerve stimulation (TENS), when repeatedly applied during the early phase of nerve injury in mice, produces sustained analgesic effects by activating the dorsal column nucleus (DCN)-thalamic-cortical pathway, which transmits vibration, discriminative touch, and proprioception. Mechanistically, TENS selectively activates glutamatergic neurons in the DCN (DCN) via exciting Aβ low-threshold mechanoreceptors (Aβ-LTMRs) in dorsal root ganglia (DRGs).

View Article and Find Full Text PDF

Background: Female athletes are more susceptible to sports-related concussions and experience greater and prolonged symptomatology. Changes in the cervico-vestibular systems have been observed in the acute phase post-concussion, but it is unknown if residual impairments persist in the following 12 months.

Objectives: To determine if there was an association between baseline screening of the cervical spine, vestibular and oculomotor systems in female athletes with and without a history of concussion.

View Article and Find Full Text PDF

Stroke significantly contributes to long-term disability, one of the problems is with impaired balance control, increasing the risk of falls. The risk of falls may be mitigated using reactive balance training (RBT) which has been shown to effectively reduce fall risk by enhancing reactive stepping following repeated balance perturbations. However, the optimal RBT intensity for people with chronic stroke remains unknown.

View Article and Find Full Text PDF

In this article, a biophysically realistic model of a soft octopus arm with internal musculature is presented. The modeling is motivated by experimental observations of sensorimotor control where an arm localizes and reaches a target. Major contributions of this article are: (i) development of models to capture the mechanical properties of arm musculature, the electrical properties of the arm peripheral nervous system (PNS), and the coupling of PNS with muscular contractions; (ii) modeling the arm sensory system, including chemosensing and proprioception; and (iii) algorithms for sensorimotor control, which include a novel feedback neural motor control law for mimicking target-oriented arm reaching motions, and a novel consensus algorithm for solving sensing problems such as locating a food source from local chemical sensory information (exogenous) and arm deformation information (endogenous).

View Article and Find Full Text PDF