Histone acetylation: where to go and how to get there.

Epigenetics

Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.

Published: April 2009


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Transcriptionally active DNA is packaged with histones that are post-translationally acetylated on multiple lysines within their amino termini. While the majority of this acetylation is limited to the promoters of genes, acetylated histones are also found throughout transcribed units. Over the last decade we have uncovered many of the pathways involved in directing histone acetylation to active genes. This review will summarize much of this groundbreaking research as well as discuss some of the outcomes of this important protein post-translational modification.

Download full-text PDF

Source
http://dx.doi.org/10.4161/epi.4.3.8484DOI Listing

Publication Analysis

Top Keywords

histone acetylation
8
acetylation transcriptionally
4
transcriptionally active
4
active dna
4
dna packaged
4
packaged histones
4
histones post-translationally
4
post-translationally acetylated
4
acetylated multiple
4
multiple lysines
4

Similar Publications

Transcription initiation factor TFIID subunit 1 (TAF1) is a pivotal component of the TFIID complex, critical for RNA polymerase II-mediated transcription initiation. However, the molecular basis by which TAF1 recognizes and associates with chromatin remains incompletely understood. Here, we report that the tandem bromodomain module of TAF1 engages nucleosomal DNA through a distinct positively charged surface patch on the first bromodomain (BD1).

View Article and Find Full Text PDF

Background: Oral squamous cell carcinoma (OSCC) is one of the most frequent head and neck cancers. The 4-nitroquinoline 1-oxide (4NQO) mouse model of oral carcinogenesis is a well-established model to investigate the mechanism behind OSCC development, including epigenetic alterations. Studies have shown that histone acetylation is a key regulator of gene expression and may play a role in such a tumor.

View Article and Find Full Text PDF

The effect of non-functionalized polystyrene nanoparticles (PS-NPs) with diameters of 29, 44, and 72 nm on plasmid DNA integrity and the expression of genes involved in the architecture of chromatin was investigated in human peripheral blood mononuclear cells (PBMCs). The cells were incubated with PS-NPs at concentrations ranging from 0.001 to 100 µg/mL for 24 hours.

View Article and Find Full Text PDF

Introduction: Epigenetic changes are important modulators of gene expression. The histone acetyltransferase gene non-derepressible 5 (Gcn5) is emerging as a pivotal epigenetic player in metabolism and cancer, yet its role in obesity and cardiovascular disease remains elusive.

Aims: To investigate Gcn5 role in obesity-related endothelial dysfunction.

View Article and Find Full Text PDF

Somatic embryogenesis (SE) is an in vitro mass propagation system widely employed in plant breeding programs. However, its efficiency in many forest species remains limited due to their recalcitrance. SE relies on the induction of somatic cell reprogramming into embryogenic pathways, a process influenced by transcriptomic changes regulated, among other factors, by epigenetic modifications such as DNA methylation, histone methylation, and histone acetylation.

View Article and Find Full Text PDF