98%
921
2 minutes
20
Fully loaded: Noncovalent anchoring of liposomes into polymer multilayered films with cholesterol-modified polymers allows the preparation of capsosomes-liposome-compartmentalized polymer capsules (see picture). A quantitative enzymatic reaction confirmed the presence of active cargo within the capsosomes and was used to determine the number of subcompartments within this novel biomedical carrier system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.200900386 | DOI Listing |
Int J Nanomedicine
September 2025
Department of Pharmaceutics and Pharmaceutical Technology, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia.
Background: Candidiasis, predominantly caused by , poses a significant global health challenge, especially in tropical regions. Nystatin is a potent antifungal agent that is hindered by its low solubility and permeability, limiting its clinical efficacy.
Methods: This study aimed to investigate the potential of a layer-by-layer (LBL) coating system, employing chitosan and alginate, to improve the stability, entrapment efficiency (%EE), and antifungal efficacy of nystatin-loaded liposomes against Candida albicans.
Int J Biol Macromol
September 2025
Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea. Electronic address:
Modified hyaluronic acid (HA) biomaterials have received considerable attention in recent years, especially in developing innovative therapeutic strategies for targeted disease interventions. HA serves to shield therapeutics from the physiological environment, while enabling safe delivery and promoting uptake into specific cells. As a hydrophilic chain polymer, HA is readily chemically modified into functional biomaterials for drug delivery and cancer immunotherapy.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Department of Pharmaceutical Analysis, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra 400056, India. Electronic address:
Gum Arabic (GA), a naturally occurring polysaccharide, has emerged as a promising biomaterial for drug delivery systems (DDS) due to its high water solubility, emulsifying capacity, biocompatibility, and biodegradability. Its structural richness in arabinogalactan facilitates strong interactions with biomolecules, enabling the development of various drug formulations including hydrogels, nanoparticles, liposomes, and emulsions. GA-based DDS have demonstrated significant potential in enhancing the solubility of poorly water-soluble drugs, protecting bioactive compounds from degradation, and enabling sustained and controlled drug release.
View Article and Find Full Text PDFNanoscale Horiz
September 2025
State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
Gastric cancer (GC) is one of the leading causes of cancer-related mortality worldwide. Despite significant efforts and recent advances in GC treatment, therapeutic efficacy remains suboptimal. In recent years, emerging nanomaterials have demonstrated considerable potential for cancer therapy, primarily due to their ability to function as drug carriers that enable targeted and precise delivery of therapeutic agents to tumour tissues.
View Article and Find Full Text PDFSmall
September 2025
Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
Engineered bionanomaterials, natural or engineered nano-scale biomaterials used in biomedical applications such as liposomes and polymer nanoparticles, have emerged as transformative platforms for targeted nucleic acid drug delivery, addressing critical challenges in precision therapeutics. These advanced biomaterials leverage their inherent biocompatibility, tunable surface chemistry, and nano-scale dimensions to overcome biological barriers while protecting nucleic acid payloads from enzymatic degradation. Recent breakthroughs in material functionalization strategies have enabled unprecedented spatial control, allowing precise targeting of specific tissues, cellular compartments, and even subcellular organelles.
View Article and Find Full Text PDF