98%
921
2 minutes
20
A large number of thioredoxins (Trxs), small redox proteins, have been identified from all living organisms. However, many of the physiological roles played by these proteins remain to be elucidated. We isolated a high M(r) (HMW) form of h-type Trx from the heat-treated cytosolic extracts of Arabidopsis (Arabidopsis thaliana) suspension cells and designated it as AtTrx-h3. Using bacterially expressed recombinant AtTrx-h3, we find that it forms various protein structures ranging from low and oligomeric protein species to HMW complexes. And the AtTrx-h3 performs dual functions, acting as a disulfide reductase and as a molecular chaperone, which are closely associated with its molecular structures. The disulfide reductase function is observed predominantly in the low M(r) forms, whereas the chaperone function predominates in the HMW complexes. The multimeric structures of AtTrx-h3 are regulated not only by heat shock but also by redox status. Two active cysteine residues in AtTrx-h3 are required for disulfide reductase activity, but not for chaperone function. AtTrx-h3 confers enhanced heat-shock tolerance in Arabidopsis, primarily through its chaperone function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2689952 | PMC |
http://dx.doi.org/10.1104/pp.109.135426 | DOI Listing |
J Biol Chem
September 2025
Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109. Electronic address:
Hydrogen sulfide (HS) is a respiratory poison and also a product of our own metabolism. The toxicity of HS is mitigated by the activity of mitochondrial sulfide quinone oxidoreductase (SQOR), which oxidizes HS while concomitantly reducing coenzyme Q. An unusual cysteine trisulfide cofactor distinguishes SQOR from other members of the flavin disulfide reductase superfamily.
View Article and Find Full Text PDFFree Radic Biol Med
September 2025
Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614. Electronic address:
Dietary restriction (DR), which slows aging, increases the ratio of reduced glutathione (GSH) to oxidized glutathione disulfide (GSSG) in the brain. DR increases liver cytoplasmic [NADPH]/[NADP] where much of the NADPH is generated by the folate cycle. This could also occur in astrocytes, the neural cell type with the highest folate cycle flux.
View Article and Find Full Text PDFInt J Mol Sci
August 2025
Organic Chemistry Laboratory, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany.
Human fungal infections comprise systemic mycoses as well as various skin diseases. Rising case numbers along with inefficient therapies and the appearance of drug-resistant strains unleashed a considerable health problem over the last years. Thus, the identification and development of new antifungal drugs is mandatory, which can include the design of new antifungals, or, more time saving, the repurposing of known drugs already applied for the therapy of other human diseases.
View Article and Find Full Text PDFAntioxidants (Basel)
August 2025
Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany.
Almost every cell of a multicellular organism is in contact with the extracellular matrix (ECM), which provides the shape and mechanic stability of tissue, organs and the entire body. At the molecular level, cells contact the ECM via integrins. Integrins are transmembrane cell adhesion molecules that connect the ECM to the cytoskeleton, which they bind with their extracellular and intracellular domains.
View Article and Find Full Text PDFFEBS J
August 2025
Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences and Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Spain.
Ferredoxin-dependent flavin thioredoxin reductases (FFTRs) catalyze the reduction of the disulfide bond in thioredoxins using electrons transferred from ferredoxin, and therefore play a pivotal role in cellular disulfide relay reactions. FFTRs are essential in cyanobacteria such as Gloeobacter and Prochlorococcus, in which they serve as the sole thioredoxin reduction system, as well as in certain Clostridium species, where they are implicated in processes such as sporulation. Despite the well-established role of ferredoxin in reducing FFTRs, the underlying mechanistic details remain poorly understood.
View Article and Find Full Text PDF