98%
921
2 minutes
20
Our work characterizes the effects of opiate (morphine) dependence on auditory brainstem and visual evoked responses in a rhesus macaque model of neuro-AIDS utilizing a chronic continuous drug delivery paradigm. The goal of this study was to clarify whether morphine is protective, or if it exacerbates simian immunodeficiency virus (SIV)-related systemic and neurological disease. Our model employs a macrophage tropic CD4/CCR5 coreceptor virus, SIV(mac)239 (R71/E17), which crosses the blood-brain barrier shortly after inoculation and closely mimics the natural disease course of human immunodeficiency virus infection. The cohort was divided into three groups: morphine only, SIV only, and SIV + morphine. Evoked potential (EP) abnormalities in subclinically infected macaques were evident as early as 8 weeks postinoculation. Prolongations in EP latencies were observed in SIV-infected macaques across all modalities. Animals with the highest cerebrospinal fluid viral loads and clinical disease showed more abnormalities than those with subclinical disease, confirming our previous work (Raymond et al., J Neurovirol 4:512-520, 1998; J Neurovirol 5:217-231, 1999; AIDS Res Hum Retroviruses 16:1163-1173, 2000). Although some differences were observed in auditory and visual evoked potentials in morphine-treated compared to morphine-untreated SIV-infected animals, the effects were relatively small and not consistent across evoked potential type. However, morphine-treated animals with subclinical disease had a clear tendency toward higher virus loads in peripheral and central nervous system tissues (Marcario et al., J Neuroimmune Pharmacol 3:12-25, 2008) suggesting that if had been possible to follow all animals to end-stage disease, a clearer pattern of evoked potential abnormality might have emerged.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3713620 | PMC |
http://dx.doi.org/10.1007/s11481-009-9149-3 | DOI Listing |
J Neurosci
September 2025
Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.
Human speech perception is multisensory, integrating auditory information from the talker's voice with visual information from the talker's face. BOLD fMRI studies have implicated the superior temporal gyrus (STG) in processing auditory speech and the superior temporal sulcus (STS) in integrating auditory and visual speech, but as an indirect hemodynamic measure, fMRI is limited in its ability to track the rapid neural computations underlying speech perception. Using stereoelectroencephalograpy (sEEG) electrodes, we directly recorded from the STG and STS in 42 epilepsy patients (25 F, 17 M).
View Article and Find Full Text PDFPract Neurol
September 2025
Neurology Department, Croydon University Hospital, London, England, UK
A 22-year-old woman had an 8-year history of progressive bilateral vision loss and of diabetes mellitus. Her mother had diabetes and two first cousins had severe congenital deafness. On examination, her visual acuities were 6/36 bilaterally, with absent colour vision and gross optic disc pallor.
View Article and Find Full Text PDFAnn N Y Acad Sci
September 2025
BCBL, Basque Center on Cognition, Brain and Language, Donostia, Spain.
Neural tracking, the alignment of brain activity with the temporal dynamics of sensory input, is a crucial mechanism underlying perception, attention, and cognition. While this concept has gained prominence in research on speech, music, and visual processing, its definition and methodological approaches remain heterogeneous. This paper critically examines neural tracking from both theoretical and methodological perspectives, highlighting how its interpretation varies across studies.
View Article and Find Full Text PDFJ Neurophysiol
September 2025
Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
Repetition suppression, the reduced neural response upon repeated presentation of a stimulus, can be explained by models focussing on bottom-up (i.e. adaptation) or top-down (i.
View Article and Find Full Text PDFExp Brain Res
September 2025
School of Information Science and Technology, Yunnan Normal University, Kunming, 650500, China.
This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.
View Article and Find Full Text PDF